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ABSTRACT: Within this manuscript and the associated seminar presentation, I present 
results from a soon-to-be-released open-source code that simulates the two-dimensional Holstein 
model within the Migdal approximation.  This algorithm implements fast Fourier transforms to 
evaluate the momentum and Matsubara frequency sums pertinent to the expressions defining the 
fully renormalized electron and phonon propagators and evaluates them self-consistently.  This 
routine has given us access to finite-size lattice simulations previously unseen in similar 
calculations.  Most importantly, we were able to study pairing and charge density correlations 
over a wide range of electron doping and frequency and have observed the emergence of a 
superconducting dome with increasing phonon frequency.   

INTRODUCTION: The electron-phonon (e-ph) interaction (EPI) is pervasive in solids 
and supports the transport and other properties of many poor metals and semiconductors.  
The EPI is now commonly associated with conventional superconductivity (SC) where the 
pairing between electrons is understood to be mediated by virtual phonon exchange1.  In 
addition to SC, the EPI is also responsible for charge-density-wave (CDW) insulators 2.  
Landau was the first to propose the existence of the lattice polaron3, which is a 
quasiparticle known to form if the EPI is sufficiently large.  Effective models dealing with 
polaron physics have been an active field of study since the development of the Fröhlich4 
and Holstein5 Hamiltonians, and even the more recent ab initio treatments of the EPI have 
made remarkable progress6.  
 Despite the long and arduous effort to study these systems, many issues remain to be 
addressed, even for the simplest models.  Among these models, the Holstein-model (and its 
extension: the Hubbard-Holstein model) has served as the most straightforward way to 
describe systems of electrons interacting with the crystal lattice.  Approximating the ionic 
motion using a system of independent oscillators with a non-dispersive phonon energy 
scale given by Ω , the electrons and phonons have a purely local on-site coupling 

/ (2 )g Mα= Ω where M is the ion mass and α is the EPI strength.  This isotropic e-ph 
coupling is assumed momentum independent in the Holstein model, but this is not 
necessarily true in general; i.e. we should expect some anisotropic form ,gk q .  The second 
quantized single-band Holstein Hamiltonian in 2D is expressed in real space as    

( )
2

† † 2 2
, , , , , ,

, , , ,

ˆ 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( h.c.) 1
2 2

i
i j i j i i i i i

i j i i i

PH t c c c c M X n X
Mσ σ σ σ σ

σ σ σ

µ α
 

= − + − + + Ω + − 
 

∑ ∑ ∑ ∑        (1.1)                                        

where the hopping ,i jt t→  is to nearest neighbor (NN) sites, µ  is the chemical potential, 
†
,îc σ ( ,îc σ ) creates (annihilates) an electron on site i with spin σ , †

, , ,ˆ ˆ ˆi i in c cσ σ σ= is the electronic 

number operator, and îP  ( ˆ
iX ) represents the momentum (position) operator for the i th ion in 

the lattice.   
 The Holstein model as defined in Eqn.(1.1) has been studied extensively via analytical and 
numerical techniques including diagrammatic expansions 7, variational approaches8, 
dynamical mean-field theory9,10, and quantum Monte Carlo methods7,8,11–15.  Collectively, 
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these studies confirm that the Holstein model exhibits CDW and superconducting 
instabilities, the latter in the s-wave channel.  The associated transition temperatures for 
these phases vary as a function of doping, phonon frequency, and Fermi surface topology.  
However, there does not seem to be any comprehensive study of the temperature-doping 
phase diagram for this model.       

The Holstein model is often studied diagrammatically within the Migdal 
approximation16.  Migdal’s original theory made the argument that corrections to the e-ph 
vertex function were of F( ( / ))Eλ Ω whereλ is the dimensionless e-ph coupling and FE  is 
the Fermi-energy.  If the e-ph coupling is not too large and the renormalization of both the 
electron and phonon properties are accounted for self-consistently, the Migdal 
approximation compares well with QMC near half-filling7,10,15.  It should be stated that 
these studies do not comprehensively prove this to be true, rather they show this to be the 
case for select parameters.  In what follows, we will show that the diagrammatic approach 
can be used to obtain temperature vs. doping phase diagrams. 

 
PROCEDURE: In the Migdal theory, we 
calculate the electron and phonon propagators 
and self-energies in a self-consistency loop.  
We can do this because we have analytical 
expressions from the diagrammatic expansion.  
The figure on the right depicts the (a) fully-
dressed single-particle propagator and (b) the 
fully dressed phonon propagator.  The electron 
self-energy is composed of two pieces, the (non-
crossing) rainbow diagrams, and the Hartree 
term.  Finding the values of these propagators 
numerically allows us to calculate higher particle number correlations such as two particle 
susceptibilities.  Since we are interested in pairing and CDW correlations, we have 
calculated the temperature dependence of the  singlet-pairing (superconducting) 
susceptibility SCχ and the CDW susceptibility CDW ( )χ q where q is a momentum transfer 
(a.k.a. scattering) vector.   

In the thermodynamic limit, each of these two susceptibilities can diverge as the 
calculation approaches their respective quantum critical temperatures SC

cT and CDW
cT .  

Usually, the system has an instability that favors one phase over the other, with the other 
correlations being suppressed.  Our calculations are performed on a finite-size lattice, 
hence they only approximate the thermodynamic limit and thus 
also the asymptotic behavior for χ .  Careful extrapolation of 
the inverse susceptibilities to the temperature axis is one way 
to find estimates for the critical temperatures, but we find 
that this is only reliable for the SC-transition because SCχ
approaches its thermodynamic limit behavior even for 
modestly sized lattices (e.g. N=642).  For CDW ( )χ q it is well 
known12 that this function should obey the Ising universality 
class in two dimensions so that we can fit CDWχ (for a single 
q vector) with 7/4

max( ) | / 1|cA T Tχ −= −q  , and with this fit 
we obtain  CDW

cT .  We find that the finite size dependence is 
rather significant as seen in the figure to the right.  For 

Figure 1: Electron and phonon propagators in the 
Migdal approximation.  

Figure 2: Finite-size dependence. 
Hopping beyond NN sites is 0, i.e. t’=0.  
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lattice sizes smaller than N=322 , the Ising class is a very poor descriptor of the functional 
behavior of  CDWχ and thus we omit those fit results smaller than this value. 

RESULTS: After collecting the critical temperatures across a wide range of electron 
doping n〈 〉 from 0 to 1.0 (where n〈 〉 =1.0 =half-filling), we plotted the phase diagrams in 
the three-panel plot (Fig. 3).  We performed all these calculations for a constant 
dimensionless coupling 22 /g Wλ = Ω 0.3= but examined three phonon frequencies / tΩ =
0.1, 0.5, and 1.0.  In all cases there exists a commensurate CDW phase peaked at half-
filling with at scattering vector max ( , )π π=q which is suppressed with increasing Ω .  For 
panel (a), we observe an incommensurate CDW where max ( , )π κπ=q  with 1κ < .  Most 
notably, we see that increasingΩ  reveals a larger non-monotonic SC region which can 
effectively be called a dome.  This behavior is only thought to be associated with 
unconventional SC, however, we see it here under the Migdal approximation which is 
associated with BCS-like superconductivity.         

CONCLUSION: Here we have shown the emergence of an SC-dome within the 
framework of a theory associated with conventional superconductivity.  Moreover, 
we have also shown that using finite-size calculations to approximate the 
thermodynamic limit needs to be carefully investigated as our relatively large 
calculations up to 2128N = were especially important for capturing the proper 
universality class behavior of the CDW correlations.  Both findings should be of 
importance to those who work with effective models aimed at studying emergent 
phenomena.  Namely, a SC dome may emerge in a conventional superconductor and 
more justification may be required when studies claim to study the thermodynamic 
limit with finite-size calculations.      
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