Temperature-Doping Phase Diagram of the 2D Holstein Model

P. Dee ^{1,2} K. Nakatsukasa ^{1,2} Y. Wang ³ B. Nosarzewski, ^{4,5}, E. Huang, ^{4,5}, T. Devereaux ^{4,5}, S. Johnston ^{1,2}

 $^{1}\mbox{Department}$ of Physics and Astronomy, The University of Tennessee, Knoxville, TN

²Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, TN

³Départment de Physique, Université de Sherbrooke, Québec, Canada

⁴Stanford Institute for Materials & Energy Sciences , Stanford University

⁵SLAC National Accelerator Laboratory

March 5, 2018

Figure: P. Dee, et. al. (To be published)

Technology, 29

• Migdal's Approx: $\Gamma \sim \lambda \Omega/E_F \sim \sqrt{m/M} \sim 0.01$ where $\lambda = g^2/(W\Omega^2) = 0.3$

What we know and what we don't.

- Holstein exhibits metal-insulator transition as function of doping¹.
- Peierls-CDW at half-filling and s-wave SC at lower doping¹.
- NNN hopping enhances pairing correlations²
- What is the nature of phase boundary $(T_c \text{ vs.} \langle n \rangle)$?
- Is there a SC dome?

¹R. Noack. *et al.*, Phys. Rev. Lett. **66**,778-781 (1991)
 ²Hirsch, J. E. *et al.* (1986) Phys. Rev. Lett., **56**, 2732-2735.

How do we obtain T_c ?

- Extrapolate inverse susceptibilities.
- * Works well for $\chi^{\rm SC}.$
- * $\chi^{\rm CDW}$ is expected to obey Ising universality class

$$\chi^{\rm CDW} \propto \left|\frac{T-T_c}{T_c}\right|^{-7/4}$$

- We notice significant finite size effects in $\chi^{\rm CDW}.$

Finite-size effects on T_c : $L = \sqrt{N} = 256, 128, 64, \text{ and } 32$

ME Theory Phase Diagram

Isotropic e-ph coupling and NN hopping only. All points obtained from lattice sizes $\geq 128 \times 128$.

The SC region is not simply monotonic as expected for conventional SC, rather we get a dome-like structure.

Temperature-Doping Phase Diagram of the 2D Holstein Model

Incommensurate Peaks in $\chi^{\rm CDW}({\bf q})$

Temperature-Doping Phase Diagram of the 2D Holstein Model

Philip Dee

Addition of NNN Hopping

Temperature-Doping Phase Diagram of the 2D Holstein Model

⁹/18

Conclusion and Further Questions

...on the phase diagram

- · Distinct CDW phase near half-filling and s-wave SC phase away from half-filling.
- SC enhanced by increasing phonon frequency and NNN hopping. CDW is suppressed by both.
- Non-monotonic behavior seen in SC phase. Will it remain even with vertex corrections?

...on our method

- Access to large finite clusters $\sim 256 \times 256 \rightarrow$ largest value tested.
- Qualitatively agrees with DQMC on most doping, but overestimates T_c on the average.

Thank you for your attention!

The finite-temperature Green's function

Imaginary time-ordering operator

Fermion operators:
$$\hat{c}_{\mathbf{k},\sigma}(\tau) = e^{\hat{H}\tau} \hat{c}_{\mathbf{k},\sigma} e^{-\hat{H}\tau}$$

 $\mathcal{G}_{\sigma,\sigma'}(\mathbf{k},\tau;\mathbf{k}',\tau') = -\langle \hat{T}_{\tau} \hat{c}_{\mathbf{k},\sigma}(\tau) \hat{c}_{\mathbf{k}',\sigma'}^{\dagger}(\tau') \rangle$
 $= -\text{Tr} \left[\hat{\rho} \hat{T}_{\tau} \left\{ \hat{c}_{\mathbf{k},\sigma}(\tau) \hat{c}_{\mathbf{k}',\sigma'}^{\dagger}(\tau') \right\} \right]$
Statistical operator: $\hat{\rho} = e^{-\beta(\hat{H}-\hat{\Omega})}$

$$\mathcal{G}_{\lambda,\lambda'}(\mathrm{i}\omega_n) = rac{1}{eta} \int_0^eta \mathcal{G}_{\lambda,\lambda'}(au) \mathrm{e}^{\mathrm{i}\omega_n au}\,, \quad ext{where} \quad \omega_n = rac{(2n+1)\pi}{eta} \quad ext{(fermions)}$$

Working in Momentum space

$$\hat{H} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k},\sigma} \hat{c}_{\mathbf{k},\sigma} + \Omega \sum_{\mathbf{k}} \left(\hat{a}^{\dagger}_{\mathbf{k}} \hat{a}_{\mathbf{k}} + \frac{1}{2} \right) \\ - \frac{g}{\sqrt{2N_s M \Omega}} \sum_{\mathbf{k},\mathbf{k}',\sigma} \left(\hat{a}_{\mathbf{k}'-\mathbf{k}} + \hat{a}^{\dagger}_{-(\mathbf{k}'-\mathbf{k})} \right) \hat{c}^{\dagger}_{\mathbf{k}',\sigma} \hat{c}_{\mathbf{k},\sigma}$$

• Electron dispersion:

$$\epsilon_{\mathbf{k}} = -2t \left(\cos(k_x d) + \cos(k_y d) \right) - \left(\mu - \frac{\alpha^2}{K} \right).$$

• We will use finite temperature many-body Green's functions to make equilibrium calculations.

$$\mathcal{G}_{\sigma}(\mathbf{k}, i\omega_n) = [i\omega_n - \epsilon_{\mathbf{k}} - \Sigma_{\sigma}(\mathbf{k}, i\omega_n)]^{-1}$$
$$\mathcal{D}(\mathbf{q}, i\nu_n) = \left[-M(\Omega^2 + \nu_n^2) - \Pi(\mathbf{q}, i\nu_n)\right]^{-1}$$

Propagators in Migdal Theory

Susceptibilities

Singlet Pairing (SC) Susceptibility

CDW Susceptibility

Phonon Dispersion: $\lambda = 0.3$

/18

Temperature-Doping Phase Diagram of the 2D Holstein Model

Results: One-Quarter Filling $\langle n \rangle = 0.50 \ (4 \times 4)$

18

Temperature-Doping Phase Diagram of the 2D Holstein Model

Results: DQMC vs. ME Theory $\lambda = 0.30 \ (10 \times 10)$

Philip Dee

Temperature-Doping Phase Diagram of the 2D Holstein Model

¹⁷/18

Results: DQMC vs. ME Theory $\lambda = 0.50 \ (10 \times 10)$

- Large enough λ reveals breakdown of ME theory.
- DQMC shows rapid enhancement of CDW and weak pairing correlations.
- I. Esterlis *et al.*(2017) claim ME theory agrees for $\lambda \lesssim 0.4$ around half-filling.

