Magnetic and pairing tendencies in quasi 1D multi-orbital models

Niravkumar D. Patel

npatel37@utk.edu

Overview of Fe-based High-T_c Scs

Similarities to cuprates

- Layered material.
- Superconducting order upon doping.
- Tetragonal to orthorhombic structural transition.

Differences to cuprates

• $(\pi, 0)$ magnetic ordering.

 $d_{x^2 - y^2}$

- Multiple d-orbitals are active.
- Bad-metal.

Correlation effects are not negligible

x-ray emission spectroscopy (room T) H. Gretarsson et al., PRB **84**, 100509 (2011)

D. Liu et al., Nature Communications 3, 931 (2012)P. Dai et al., Nat. Phys. 8, 709 (2012)

Interesting field is emerging Iron ladders

Why is this important?

First time that iron-based superconductivity is found in a nonlayered geometry.

H. Takagashi et al., Nature Materials **14**, 1008 (2015) T. Yamauchi et al., Phys. Rev. Lett. **115**, 246402 (2015) Model: Multiorbital Hubbard Model Method: Density Matrix Renormalization Group (DMRG)

Number operator:

$$n_{i\sigma\gamma} = c_{i\sigma\gamma}^{\dagger} c_{i\sigma\gamma}$$

Spin operator:

$$\mathbf{S}_{i\gamma} = \sum_{\sigma\sigma'} c^{\dagger}_{i\sigma\gamma} \sigma_{\sigma\sigma'} c_{i\sigma'\gamma}$$

Two-orbital Hubbard model - $BaFe_2S_3$ ladders Half filling – 2e/site

N. D. Patel et al., Phys. Rev. B 94, 075119 (2016)

$$S(k_z, k_y) = \frac{1}{N^2} \sum_{i,j} e^{-i\vec{k}\cdot\vec{r}_{ij}} \langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle$$

2-Hole Doping - BaFe₂S₃ ladders

N. D. Patel et al., Phys. Rev. B 94, 075119 (2016)

Pair Structure in - BaFe₂S₃ ladders

N. D. Patel et al., Phys. Rev. B 94, 075119 (2016)

P. O. Sprau et al., "Discovery of Orbital-Selective Cooper pairing in FeSe" Science 357, 75 (2017)

Multi-orbital ladders are numerical expensive to study.

How can I simplify my model to focus only on the pairing mechanism?

Multi-orbital chains

BaFe₂S₃ Ladder

two-orbital model on a chain

Only intra-orbital hopping (xz,yz) no crystal field

N. D. Patel et al., Phys. Rev. B **96**, 024520 (2017)

Pair-Pair correlations & real-space decay

two-orbital chain

$$\mathcal{O}_{nn,\pm}^{\gamma\gamma'}(R) = \frac{1}{2N_R} \sum_{i} \left\langle \Delta_{nn,\pm}^{\gamma\gamma'}(i) \Delta_{nn,\pm}^{\gamma\gamma'}(i+R) \right\rangle$$

x=0.166 N - 8 10^{-2} 10^{-4} 10^{-4} 10^{-6} R

Pair-Pair correlations decay slower than the spin/charge density wave.

Competition SC, magnetism, and charge intertwined orders.

Work in progress: What is responsible for singlet pairs?

Upper limit of Hund coupling

$$U' \ge J_H$$
$$\frac{J_H}{U} \le \frac{1}{3}$$

Summary

 Iron-based ladders become superconducting at high pressure, and they can be studied theoretically with accuracy.

Our main results are the following

- Binding of holes found even through the Hamiltonian is purely <u>repulsive</u>!
- In BaFe₂S₃ ladders, rung and diagonal hole-pair configurations are dominant.
- Pairing upon hole doping is also found in the two-orbital chains. Origin?