Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum

Hua Chen*
Course: Solid State II, Instructor: Elbio Dagotto,

Semester:

Spring 2008

Department of Physics and Astronomy,
the University of Tennessee at Knoxville, 37996

The various uncommon properties of magnetic nanoparticles (Stoner nanoparticles) and molecular
magnets have attracted much attention in industry as well as in the academic community. In this
review we begin with going through important experiments in this field and possible applications
of these materials. Then we introduce the theoretic models currently used for Stoner nanoparticles
and molecular magnets respectively. They are the Stoner-Wohlfarth model and the Landau-Lifshitz-
Gilbert(LLG) theory in the former case and the quantum macrospin model for the latter one. In the
end we give a brief discussion on the shortcomings of these models and propose a possible approach

to build a mesocopic magnetic dynamical theory.
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I. INTRODUCTION

In recent years, nanoparticles and nano-thin films
with large magnetic moments and magnetic anisotropy
have attracted much interest. In these materials, all or
most atoms’ magnetic moments are strongly coupled and
aligned in the same direction, creating a single magnetic
domain. And because of its mesoscopic scale, these ma-
terials usually exhibit non-classical behaviors. From the
application point of view, these kinds of materials are op-
timal candidates for high density data storage and, pos-
sibly, quantum computation. Also from the theory point
of view, study of the properties of magnetic nanoclusters
requires deeper understanding of the transition from the
quantum to the classical world.

Generally speaking, there are two kinds of magnetic
nanoparticles under discussion. One of them is a crys-
tal or semi-crystal composed of magnetic ions such as
Fe or Mn. Its total spin is large enough that it can
be treated classically. We call these kinds of particles
Stoner nanoparticles because they can be properly de-
scribed by the classical model proposed by Stoner and
Wohlfarth [1]. The first experiment in this area was
done by S. Sun, et al.[2], who discovered the sponta-
neous self-organization of magnetic FePt nanoparticles
on a surface (Fig. 1). It is generally believed that if mag-
netic media based on such nanoparticles could be made,
the data storage density would be as much as 100 times
larger than that in current hard drives. This prediction
is based on the small size and large magnetic anisotropy
of these nanoparticles, which can help to go beyond the
magnetic storage limit set by the phenomenon known as
superparamagnetism|3].

Besides storage density, high speed of reading and writ-
ing is also required by future information storage appli-
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FIG. 1: (A) TEM micrograph of a 3D assembly of 6-nm
as-synthesized FesoPtso particles deposited from a hexane/
octane (v/v 1/1) dispersion onto a SiO-coated copper grid.
(B) TEM micrograph of a 3D assembly of 6-nm FesoPtso
sample after replacing oleic acid/oleyl amine with hexanoic
acid/hexylamine. (C) HRSEM image of a ~ 180-nm-thick,
4-nm Fes2Ptys nanocrystal assembly annealed at 560°C for
30 min under 1 atm of N2 gas. (D) High-resolution TEM
image of 4-nm Fes2Ptsg nanocrystals annealed at 560°C for
30 min on a SiO-coated copper grid.(Figure from [2])

cations. Data reading and writing involve switching the
magnetization of magnetic storage cells (magnetization
reversal). As far as Stoner nanoparticles are concerned,
a workhorse to study the dynamics of magnetization is
classical Landau-Lifshitz-Gilbert theory [4][5].

Another kind of magnetic particle is the so-called
molecular magnet, which is a single large molecule with a
nonzero magnetic moment. One of these is the nowadays
famous Mn12012(CH35C00)16(H20)4, or Mn;s for short.
Mn;2 was first synthesized by Lis [6] in 1980. He found
that the compound contains 4 Mn** (S=3/2) ions in
a central tetrahedron surrounded by eight Mn3* (S=2)



FIG. 2: Structure of magnetic core of the Mn;s molecule.
Only the Mn*T (large shaded circles), Mn®* (large open cir-
cles) and oxygen (small circles) ions are shown. The arrows
indicate the configuration of the spins that results in a total
spin of 10 for the molecule. The diameter of Mni2 is ~ 17A

ions in a non-coplanar ring, as shown in Fig. 2.

The Mn ions are strongly superexchange-coupled
through oxygen bridges. One distinctive property of
Mn;, is that the coupling between Mn ions within this
molecule is so strong that at low temperatures it can be
treated as a single macrospin with S = 10.

In 1995 J. Friedman and collaborators measured the
hysteresis loops of Mnjs at temperatures from 1.7 to
3K (Fig. 3) [7]. All the hysteresis curves exhibited clear
steps, which had never been seen in any other magnetic
systems. Actually these steps are evidence for a quantum
phenomenon much sought after by theorists and experi-
menters in recent years: the tunneling of a spin through
a potential barrier from one orientation to another. The
importance of this experiment lies in that it is one of few
direct evidences for the so-called macroscopic quantum
tunneling (another worth mentioning is tunneling in a
Josephson Junction provided by Clark, et al. [8]). For
the explanation of these steps we will go into detail in
Sec. III.

After Mnis, a lot of other molecular magnets were dis-
covered, such as Feg, V5, Nijg etc. It is worthwhile to
mention that, because of the apparent quantum nature of
these molecular magnets and their mesoscopic size, they
are now considered promising candidates for materials of
real life quantum computation [9].

The remaining of this paper are organized as follows:
In Sec. IT we will briefly introduce the classical Stoner-
Wohlfarth model and Landau-Lifshitz-Gilbert theory, as
well as their application to the Stoner nanoparticles. In
Sec. III we will introduce the quantum macrospin model
of molecular magnets, taking Mnjs and Feg as examples.
Finally we discuss the necessity and general requirements
of building a mesoscopic magnetic dynamical theory in a
bottom-up way.
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FIG. 3: Magnetization versus applied field. Inset shows val-
ues of field where jumps in the magnetization are observed.
(Figure from [7])

II. CLASSICAL MODEL AND
LANDAU-LIFSHITZ-GILBERT THEORY

A. Static Model: Stoner-Wohlfarth Theory

Because of their large magnetic moment and small size,
the nanoparticles of the first category mentioned in the
introduction, such as FePt, can be treated without much
loss of accuracy as the classical Stoner-Wohlfarth par-
ticle. In this subsection we will introduce the Stoner-
Wohlfarth theory and, based on that, an explanation of
the magnetic hysteresis curve, as a preparation for the
LLG theory in Sec. II B.

Stoner and Wohlfarth proposed a simple model to ex-
plain the magnetization hysteresis curve of heterogeneous
alloys in 1948 [1]. We now know the generally accepted
explanation of hysteresis is the irreversible motion of
magnetic domain walls. When an external magnetic field
is applied, energy minimization requires domains ori-
ented along the field to grow, with smooth motion of the
domain walls. Though ideally this motion is reversible, in
real materials it is not since the motion of domain walls
is always hindered by imperfections, and if the applied
field is strong enough to force the domain walls to pass
them, the resulting abrupt relaxation of stress will make
the process irreversible.

However, Stoner and Wohlfarth argued that in those
materials in which particle-like single-domain magnetic
units are separately embedded in a non-magnetic ma-
trix, the above process cannot proceed since there are
no domain walls, and in this case another mechanism is
dominant, that is, the direct rotation of each particle’s
magnetization. And in this mechanism the irreversibil-
ity is from the large magnetic anisotropy energy of those
particles. Now we can see that this is just the situation
of magnetic nanoparticles like FePt.

Basically the model Stoner and Wohlfarth studied is a
uniformly magnetized single domain particle. With this
assumption, classical macroscopic magnetostatics can be



used without any problems. Additionally, they require
the particle to have spheroidal symmetry and uniaxial
anisotropy along the rotational-symmetry axis. Gener-
ally, the Gibbs free energy of a classical magnetic system
in an external magnetic field can be expressed as [10]:

G(MaHa):Fez+Fan+Fm+Ga
1
:Fem+Fan+/[—§M0M'Hm—M0M~Ha]dV(1)
Q

where the four terms respectively stand for the exchange
energy (between spins composing the system), anisotropy
energy, magnetostatic energy without external field and
Zeeman energy. Now the exchange energy can be ne-
glected since the particle is always uniformly magnetized.
Then, assuming the easy axis of the particle is the z-axis,
in the simplest quadratic form, the anisotropy energy can
be expressed as:

Fan<m) :Kl(l _mz)VO (2)

where m, = %, Vb is the volume of the particle and K4
is a constant. As the magnetic easy axis is along the geo-
metrical principal axis of the spheroid, the magnetostatic
energy term is simplified to be

1
F,(m) = §K2(szi + Nym + N.m?)

1 1
= KN (1= m2) + JKoNom?,  (3)

where N, N, and N, are the diagonal elements of the
diagonalized demagnetization tensor, and Ky is another
constant.

Then, we can neglect constant terms in G, since to get
the equilibrium property we only require its derivative
to be zero. Thus in a compact dimensionless form, the
Gibbs free energy is written as

1
g(m,h,) = —ikeffmz—m~ha. (4)

The behavior of g is depicted in Fig. 4, in which 6,
0y, are respectively the spherical angles between m, h,
and the z-axis. Fig. 5 shows the hysteresis curve Stoner
and Wohlfarth got from their model, which is not hard to
imagine with the help of Fig. 4. Correspondingly, Fig. 6
shows hysteresis curves of FePt nanoparticles from ex-
periments.

Fig. 4 also shows that the free energy of the system
may have either one or two global minima, depending on
the value of h,. The separating curve, which represents
the values of critical field hgy, between the region where
two minima exist and the region where there is only one
is the so-called Stoner-Wohlfarth astroid (Fig. 7). In the
particular case of 8, = 0, it is easy to verify that hgy =

kefg.

B. Landau-Lifshitz-Gilbert Theory

As mentioned in the introduction, one major possible
application of magnetic nanoparticles is in magnetic stor-
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FIG. 4: Free energy as a function of angle 0, keyr > 0. (a)
for hy, = 0 two minima 6 = 0, 7 and two maxima 6 = +m/2
exist. (b) for small h, with given 0, # 0 there still exist
two minima and two maxima. (c) a critical value hsw (6r)
of h, exists such that a saddle point appears in place of one
minimum and one maximum. (d) for h, > hsw (61) only one
minimum and one maximum remain.
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FIG. 5: Hysteresis loops in Stoner’s original paper. The ex-
ternal field in abscissa is measured in units of k.;y. Magneti-
zation in ordinate is measured in units of M.

age of information, where one must study the dynamics
of a single magnetic cell. Most of the theoretical analysis
is based on the classical model proposed by Landau and
Lifshitz in 1935 [4], and later modified by Gilbert [5] in
1955. The basic idea of this theory is very simple. Let’s
begin with the relation between the magnetic moment
M and the angular momentum L in classical electromag-
netic theory:

M = L, (5)

where v = % is the gyromagnetic ratio and g is the

Landé factor. Then classical angular momentum theorem
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FIG. 6: Hysteresis loops of self assembled FePt nanoparticles
annealed at 500°C for 30 min.(Figure from [11])
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FIG. 7: The Stoner-Wohlfarth astroid in the hy., hqe1 plane,
which can be found by searching the saddle points of free
energy on the plane.

gives:

dL

—=MxH 6

o (6)
where H is the external magnetic field. Substituting
Eq. (5) into this equation we get the dynamical equa-
tion of the magnetization M:

dM

— =—yM x H. 7

o gl (7)
Assuming the field H to be time independent, multiply-
ing Eq. (7) by M and H respectively gives

d

S =0,

M) - H] = 0. (5)
These two equations tell us that the magnitude of M and
the angle between M and H are unchanged during the
motion, which means Eq. (7) represents a precessional
motion.

Until now our system has been conserved. The idea
of Landau and Lifshitz is to introduce damping, hence

the interaction with the environment in this system. In
analogy with damping motion in Newton dynamics, one
can introduce a damping term proportional to the time
derivative of M in Eq. (7):

dM A dM

where A is the damping factor and M; = |[M] is the
saturation magnetization. Inserting Eq. (7) into Eq. (9)
gives the Landau-Lifshitz-Gilbert equation [12]:

(1420 P20 — v < )
~ ST x M) x H(®).(10)

When written in the dimensionless variables 7 = yMt,
m = M/M,, h = H/M,, the above LLG equation be-
comes

@+ 2220 _ )  n)

dr
— Am(t) x [m(t) x h(¢)]. (11)

Now we have all the necessary tools to study the dy-
namics of magnetic nanoparticles. To incorporate the
Stoner-Wohlfarth model into LLG theory, one only needs
to replace h in Eq. (11) by

99

- Om’ (12)

hepr =
where g is given by Eq. (4). The general dynamical be-
havior of Stoner particles is that, from an initial non-
equilibrium configuration, it will evolve through preces-
sion and damping to a final configuration with globally
minimal free energy. Generally people start from Eq. (11)
and Eq. (4), try different external fields and anisotropy
terms and solve the LLG equation numerically or, in very
limited cases, analytically to look for optimal speed of
magnetization reversal [14][15]. However, it is not al-
ways safe to use this approach because one cannot know
when the quantum effects will be too strong for classical
equations to hold. We will discuss this in more detail in
Sec. IV.

III. QUANTUM MACROSPIN MODEL OF
MOLECULAR MAGNETS

One motivation of a microscopic theory for molecular
magnets is to explain the uncommon steps in their mag-
netization hysteresis curves (Fig. 3). Now people gen-
erally believe that the origin of such steps is quantum
resonant tunneling. Before going into details, one can
get the simple idea of this mechanism with the help of
Fig. 8, which is just a quantum version of Fig. 4.

In classical case the system must first climb up the
potential barrier in order to go to the global minimum
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FIG. 8: Energy levels for an S = 10 spin under different
applied fields. (Figure form [16])

in another well, which result in the common hysteresis
curves as in Fig. 5. However in quantum case, it is well-
known that when any two energy levels separated by the
potential barrier “match”, the transition probability will
be much higher than that when they are different. This
phenomenon is the so-called quantum resonant tunnel-
ing. With the help of this mechanism, at certain values of
the external field the system will directly tunnel through
the barrier, resulting in abrupt change of magnetization,
hence the steps in the hysteresis curves.

At this stage one may wonder why there had been no
evidences for this simple model until very recently. Ac-
tually until the discovery of Mnjs, there had been no
good materials for magnetization tunneling experiments.
Unlike most ensembles of magnetic clusters, a macro-
scopic sample of a molecular magnet has unique, chemi-
cally determined properties. Another important feature
of these systems is that although each Mny5 cluster’s spin
(S = 10) is large for a single molecule, it is small rel-
ative to most superparamagnetic systems. This small
spin value together with the its large magnetocrystalline
anisotropy yields an appreciable energy separation be-
tween spin levels, which makes the observation of tun-
neling much easier.

Now it is easy to write down a desired Hamiltonian for
this system:

H=-DS? - gupS.H, + H', (13)

where, in close analogy with Eq. (4), the first two terms
are separately anisotropy energy and Zeeman energy, and
H' contains all terms not commuting with S, (otherwise
there would be no tunneling).

We call the model of molecular magnets using a Hamil-
tonian like Eq. (13) a semi-microscopic model, because
the inner structure of the molecule has been neglected.
On one hand, the exchange coupling between magnetic
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FIG. 9: Double-well potential of a uniaxial spin. The arrows
schematically illustrate the thermally assisted resonant tun-
neling process. (Figure form [19])

ions inside are usually strong enough to rationalize our
simplification. On the other hand, it is not practical to
start from the atomic level- remember that even the sim-
plest hydrogen molecule cannot be solved analytically. It
is also worthwhile to mention that the quantum comput-
ing scheme proposed in [9] is also based on this macrospin
model.

From Eq. (13) one can easily deduce the values of the
external field when the energy levels on either side of the
energy barrier coincide. The result reads:

H = —Dn/gus. (14)

One can verify this result by comparing it with the inset
of Fig. 3. It is satisfying that for reasonable values of D,
this is indeed where steps occur. Strictly speaking, this
is the case only at zero temperature. When at finite tem-
peratures, partly because levels near the top of the bar-
rier tunnel more easily [16], the semiclassical “thermally
assisted resonant tunneling” picture, which is illustrated
in Fig. 9, has been verified by experiments [19].

Until now everything has worked perfectly. However
to go one step further one encounters the difficulty of
discerning the H' term in Eq. (13), i.e., what causes tun-
neling? From now on we have to discriminate between
Feg and Mny,. For Feg, H' is easily recognized as the
transverse anisotropy energy which is well characterized
experimentally [17]:

H' = B(S? - 52), (15)

where E is a constant. Wernsdorfer et al. [18] exactly
solved the Hamiltonian Eq. (13) with Eq. (15) and gave
the energy spectrum with the variation of applied field,
which is depicted in Fig. 10.

At each level crossing, there is a gap opened up by the
transverse anisotropy term, and to jump across the gap
means tunneling not happening, and vice versa. The
probability to avoid crossing the gap is given by the
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FIG. 10: Energy levels of Feg as a function of applied field.
The inset shows the detail at a level crossing where there is a
gap opened by the transverse term.(Figure form [18])

Landau-Zener formula

P=1 —ezp(—ﬁgﬂ), (16)

where 3 = dH/dt is the rate at which the external field
is swept, and A is the size of the gap. From this equation
it is easy to see when one sweeps the field very slowly,
tunneling is bound to happen.

Now let’s turn to Mnyp, which is a more subtle case
since there is no well recognized S, symmetry breaking
mechanism. One major difference between Mn5 and Feg
is that the former has tetragonal symmetry, thus any
anisotropy terms must be at least of order S*. There have
been several candidate mechanisms proposed, such as
transverse external field, spin-phonon interaction, dipo-
lar interactions between neighboring molecules, hyperfine
interaction with the Mn and other nuclei in the system,
ete. [19]. However, the experiment data up to now cannot
justify which mechanism truly exists and/or dominates.

IV. BRIDGE BETWEEN QUANTUM AND
CLASSICAL

In this final section we will discuss some insufficien-
cies of the theories introduced in previous sections; then
based on that we will propose some rough ideas for a
desired mesocopic theory for nanoscale magnets, which
may bridge the gap between quantum and classical de-
scriptions.

As we mentioned in Sec. II, one main shortcoming of
the LLG theory of Stoner particles is that one cannot
know when the quantum influence will become too strong
to be excluded, especially at mesoscopic scale. This in-
sufficiency, to a considerable extent, diminishes the pre-
dictive power of LLG theory in this case [15]. On the
other hand, the treatment of dissipation in LLG theory
is somewhat empirical and phenomenological. If the mi-
croscopic nature of dissipation cannot be properly under-
stood, how to take it into account when quantum effect
are important will be a nontrivial problem.

A similar situation arises in the macrospin theory of
molecular magnets in Sec. III, where the “thermally as-
sisted resonant tunneling” at finite temperatures is still
a semiclassical picture, which treats the system as a clas-
sical thermodynamic object when no tunneling happens.
Moreover, dissipation is almost totally excluded in this
theory, which makes macrospin theory impossible to be
consistent with the essentials of LLG theory.

From the foregoing discussions we can arrive at the
idea that, to construct a mesocopic theory for nanoscale
magnets, the first step may be to include environment,
hence dissipation, at a quantum level. In the pioneer
work by Caldeira and Leggett [20] on macroscopic tunnel-
ing, dissipation is introduced as a perturbation, so that
tunneling will not be totally destroyed. In their work en-
vironment is simplified to a set of independent harmonic
oscillators linearly coupled to the system. Actually their
treatment is in the framework of a much more mature
theory today, i.e., quantum dissipation theory or dissi-
pative quantum mechanics [21]. One can see that this
framework is especially suitable for the current problem.
And actually we heard that C. Hicke has already derived
LLG equation in a bottom-up way using quantum dissi-
pation theory [22].

In conclusion, we reviewed experiments and theories in
the area of nanoscale magnets, which includes two cat-
egories: Stoner nanoparticles such as FePt, which are
treated as classical objects using LL.G theory, and molec-
ular magnets such as Mn5, which are described by quan-
tum macrospin theory. From application point of view,
in both cases the theories currently used, although very
successful, suffer from some nontrivial insufficiencies. To
remedy these shortcomings as well as to make a consis-
tent bridging between classical and quantum approaches,
we propose to employ quantum dissipation theory to in-
clude the influence of environment microscopically.
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