Introduction to Neutron Scattering and Description of ORNL Facilities

Wenbin Wang

Instructor Dagotto

Advanced Solid State Physics II (homework project)

March 9, 2009

Outline

- Brief Introduce of Neutron Science
- The Advantages of Neutron Scattering
- The Principles of Neutron Scattering
 - 1. Elastic and Inelastic Neutron Scattering
 - 2. Basic theory of Neutron Scattering
- Facilities of Neutron Scattering in ORNL
 - 1. How to Get Neutrons
 - 2. Facilities
- Conclusion

The Nobel Prize in Physics 1994

Bertram N. Brockhouse

Clifford G. Shull

neutrons see where atoms are and what they do

Why neutrons??

- Neutrons have No Charge!
- Neutrons can probe Nuclei!
- Light atom sensitive
- Sensitive to isotopic substitution

Isotopic Contrast for Neutrons

Hydrogen	Scattering Length
Isotope	b (fm)
$^{1}\mathrm{H}$	-3.7409 (11)
^{2}D	6.674 (6)
$^{3}\mathrm{T}$	4.792 (27)

Nickel Isotope	Scattering Lengths b (fm)
⁵⁸ Ni	15.0 (5)
⁶⁰ Ni	2.8 (1)
⁶¹ Ni	7.60 (6)
⁶² Ni	-8.7 (2)
⁶⁴ Ni	-0.38 (7)

 variation of the scattering lengths for the different elements

Other advantages

- Highly penetrating: study bulk samples; Can be used in extremes
- Neutrons have a Magnetic Moment: studying magnetic order, magnetic structure in materials
- Nondestructive: used for a sensitive, nondestructive study

What is neutron scattering?

Elastic Neutron Scattering

- No loss of energy
- Momentum and angle of the neutrons will change.

Inelastic Neutron Scattering

Examines both momentum and energy dependencies.

Basic function of Neutron Scattering

- The magnitudes of the Q is determined by the differences between incident wave vector and scared wave vector of the neutrons
- E is the energy of the neutrons changed during the scattering

Scattering Law

- The actual interaction between a neutron and a nucleus replaced by pseudopotential.
- \star The probability of an incident plane being scattered by V(r) is proportional to:

$$\left| \int e^{ik \cdot r} V(r) e^{-ik' \cdot r} d^3 r \right|^2 = \left| \int e^{iQ \cdot r} V(r) d^3 r \right|^2$$

For assembly of nuclei, the potential is the sum of individual neutron-nuclei interactions:

$$V(r) = \sum_{j} b_{j} \delta(r - r_{j})$$

The scattering intensity I:

$$I(Q,\varepsilon) = \frac{1}{h} \frac{k'}{k} \sum_{j,k} b_j b_k \int_{-\infty}^{\infty} \left\langle e^{-iQ \cdot r_k(0)} e^{iQ \cdot r_j(t)} \right\rangle e^{-i\varepsilon t} dt$$

Reactor Sources

- Uses nucleus fission of U-235 in a chain reaction to create neutrons
- Continuous neutron flux
- Flux is dependent on fission rate
- Create some other isotopes
- Creates radioactive nuclear waste

Cold neutrons

- Neutrons must be "cool down" before used for scattering experiment
- Neutron wavelength are too short to investigation condensed matter
- High energy tend to damage solids by knocking atoms out of their official position
- Cooling is done by bring neutrons in to thermal equilibrium

triple-axis spectrometer

- The monochromator
- The sample
- The analyzer

HFIR (High Flux Isotope Reactor)

Use reactor-based source

provides one of the highest steady-state neutron fluxes of any research reactor in the world

Spallation Sources

- Uses a cascade effect from the collision of a proton on a heavy metal.
- Pulsed Source
- High Intensity
- Heat production is relatively low

SNS (Spallation Neutron Source)

- provide spallation source
- more powerful than the most intense existing pulsed (non-fission) spallation source

Conclusion

- Study structure and dynamics of the high temperature superconductors
- biologist use this advance method to study the interaction between proteins and the genetic material of viruses
- use it to clarification of still unknown phenomena in processes such as recharging of electric batteries

References

- [1] Noble prize in physics in 1994, URL http://nobelprize.org/nobel_prizes/physics/laureates/1994
- * [2] M.L. Klein, Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayer at the air-water interface, 1994.
- ❖ [3] Gen Shirane, Stephen M. Shapiro, and John M. Tranquada, Neutron Scattering with a Triple-Axis Spectrometer (Brookhaven National Laboratory, 2002).
- [4] Roger Pynn, Neutron Scattering: A Primer (URL http://library.lanl.gov/cgi-bin/getfile?00326651.pdf)
- [5] The European Neutron Scattering Association, URL http://neutron.neutroneu.net/n_ensa/
- [6] Neutron Scattering Society of America (NSSA), URL http://www.neutronscattering.org/
- [7] Introduction to neutron science at the Spallation Neutron Source
- [8]ORNL Neutron Science, URL http://neutrons.ornl.gov/hfir/hfir_facilities.shtml
- [9]World Centre for Science with Neutron and Muons, URL http://www.isis.rl.ac.uk/