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Physical Properties  
of Carbon Nanotubes 

 
Abstract: 

Carbon nanotubes, as the prototypes of artificial one dimensional nano 
materials, have been intensely investigated since 1991. They originated from 
graphite sheets, but come along with some new physical properties due to 
quantum confinement. Soon after they were discovered, researchers realized 
their broad applications in prospect. In this paper, a brief introduction 
focusing on basic concepts and geometry of carbon nanotubes will be 
conducted, followed by a series of discussions on related electronic 
properties of carbon nanotubes, as well as other physical properties. 
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I. Introduction 
 
Physics down to the scale of nanometers has been a fascinating field for  
quite a long time, even back to more than 50 years ago, Richard Feynman 
realized that ”There’s Plenty of Room at the Bottom”[1] and predicted that 
nano science would be a new frontier. Multiwalled carbon nanotubes 
(MWNT), as hollow cylinders with diameters in the nanometer range, 



consisting of carbon atoms, were first observed in 1991 by Sumio Iijima at 
the NEC Research Laboratory, when he studied the soot made from by-
products obtained during the synthesis of fullerenes by the electric arc 
discharge method. [2] Two years later, single-wall carbon nanotubes (SWNT) 
were synthesized. [3][4] 
 
II. Typical Synthesis Methods of Carbon Nanotubes 
 
Generally, synthesis methods of carbon nanotubes can be classified into two 
main categories corresponding to different temperatures: The high 
temperature routes, such as the electric-arc discharge technique; the medium 
temperature routes (the most popular one is chemical vapor deposition). 
 
A. Electric-Arc Discharge Technique  
 
An electric-arc discharge is an electrical breakdown of a gas which produces 
an ongoing plasma, resulting from a current flowing through normally 
nonconductive media. In Iijima’s initial experiment [2], he used a DC arc 
discharge in argon consisting of a set of carbon electrodes running at 2000-
3000˚C at nominal conditions of 100A and 20V. The modified version of 
this method could bring the temperature up to 6000˚C and make the graphite 
to sublimate. As a consequence, carbon atoms are ejected from the solid and 
form plasma. These atoms will accumulate on the cathode, which is 
relatively colder. If small amounts of transition metals are introduced in the 
target graphite, the single-walled carbon nanotubes are the dominant product, 
otherwise formation of multiwalled carbon nanotubes will take place. 

 
 
 
 
 
 
 
 
 

Fig. 1. 
Left: Plasma from the electric-arc experiment performed by Thomas Ebbesen et al. [5] 
Middle: 2 sheets carbon nanotube, adapted from Iijima’s paper [2]. 
Right: By printing patterns of catalyst particles on the substrate, Hongjie Dai et al. have 
been able to control where the tubes form with chemical vapor deposition method. [5] 
 
 

http://en.wikipedia.org/wiki/Electrical_breakdown�
http://en.wikipedia.org/wiki/Plasma_(physics)�
http://en.wikipedia.org/wiki/Electrical_conductance�


B. Chemical Vapor Deposition 
 
With transition-metal particles as growth germs, the carbon containing 
gaseous compounds at temperature 600-1100˚C will decompose on those 
sites and form carbon filaments of various sizes and shapes including 
nanotubes. Typical compounds are carbon monoxide or hydrocarbons. 
 
III. Structure and Symmetry of Carbon Nanotubes 
 
The topological structure of SWNT is quite like modified single sheet 
graphene, thus the tubes are usually labeled in terms of the graphene lattice 
vectors. 
 
 

Fig. 2.Graphene lattice vectors  
a1 and a2. The chiral vector 
Ch=5a1+3a2 represents a 
possible wrapping of the two-
dimensional graphene sheet 
into a tubular form. The 
direction perpendicular to Ch 
is the tube axis. The chiral 
angle 𝜃𝜃 is defined by the Ch 
vector and the a1 zigzag 
direction of the graphene 
lattice. In the present example, 
a (5, 3) nanotube is under 
construction and the resulting 
tube is illustrated below. [6] 

 
 
 
 

 
Fig.3.Atomic structures of  
(12, 0) zigzag,  
(6, 6)   armchair, and 
(6, 4)   chiral nanotubes. 

  

 
  



TABLE I. Structural parameters for a (n, m) carbon nanotube. n, m, t1, t2 are integers. [6] 

The symmetry of carbon nanotubes is described by line groups, which are 
the full space groups of one-dimensional systems including point-group 
symmetries (e.g. rotations or reflections) and translations.  Damnjanović et 
al. showed that every nanotube with a particular chirality (n,m) belongs to a 
different line group. [7][8] Only armchair and zig-zag tubes with the same n 
belong to the same symmetry group. 

 

Fig.4.Symmetries in 
SWNT 
 
 
 
 
 
 
 
 
 
 



IV. Electronic Properties of Carbon Nanotubes 
 
Carbon nanotubes have two types of bonds due to sp2 hybridization: the σ 
bonds, which are along the cylinder wall and form the hexagonal network; 
and the π bonds which interact between different tubes (Van-der Waals 
Force). Unexpectedly, the in-plane σ bonds don’t play an important role in 
the electronic properties (e.g., electronic transport or optical absorption in 
the visible energy range) of carbon nanotubes because they are far away 
from Fermi level. In contrast, the bonding and antibonding π bands cross the 
Fermi level. [9] See Fig.5. 

 
Fig.5. Scheme of sp2 hybridization in graphene; σ bonds, π bonds and their energies with 
respect to Fermi level. Adapted from [10]. 
 
A. Reciprocal space and Brillouin zone 

Fig.6. Refer to Table I, 
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The enclosed hexagonal region 
in (b) is Brillouin zone. 



B. Tight-binding model and band structure 

In analogy with graphene, for given carbon atom, there are three nearest 
neighbors, as highlighted in Fig.7. For a single, flat graphene sheet, 
symmetry forbids coupling of π bands to σ bands that are well below and 
well above the Fermi energy. The π bands are well represented as linear 
combinations of pz orbitals of the carbon atoms, where z is perpendicular to 
the plane. Two bands of pz states will emerge due to the fact that graphene 
has two atoms per cell.  

Fig.7. Consider area near the red ball as two-dimensional plane. If we define the 
coordinates of the red ball as (0, 0), then the three nearest neighbors are (0,− a

√3
), 
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2
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Continue with the assumption of linear combination of atomic orbitals 
(LCAO), we could follow Kittel’s textbook [11] and write: 

ψk(𝐫𝐫) = ∑ Ckjφ(𝐫𝐫 − 𝐫𝐫𝐣𝐣)j            (1) 

In which φ(r) is the wave function for free electron moving in the electric 

field of isolated atom. To construct Bloch functions, let  Ckj = ei𝐤𝐤∙𝐫𝐫𝐣𝐣

√N
, N is 

normalized number (number of atoms in the system). Thus, 

ψk(𝐫𝐫) = N−1/2 ∑ e(i𝐤𝐤∙𝐫𝐫𝐣𝐣)φ(𝐫𝐫−𝐫𝐫𝐣𝐣)j                                                                     (2) 

To calculate modified energy, 



⟨𝐤𝐤|H|𝐤𝐤⟩ = N−1 ∑ ei𝐤𝐤∙(𝐫𝐫𝐣𝐣−𝐫𝐫𝐦𝐦)
j,m �φm �H�φj�                                                     (3) 

In which φm = φ(𝐫𝐫 − 𝐫𝐫𝐦𝐦) 

Let 𝛒𝛒𝐦𝐦 = 𝐫𝐫𝐦𝐦 − 𝐫𝐫𝐣𝐣 

⟨𝐤𝐤|H|𝐤𝐤⟩ = ∑ e(−i𝐤𝐤∙𝛒𝛒𝐦𝐦) ∫dVφ∗(𝐫𝐫 − 𝛒𝛒𝐦𝐦)m Hφ(𝐫𝐫)                                           (4) 

= γ0 � e(−i𝐤𝐤∙𝛒𝛒𝐦𝐦), in the case �𝐤𝐤�H(0)�𝐤𝐤�
m

= 0,   

γ0 = � dVφ∗(𝐫𝐫 − 𝛒𝛒𝐦𝐦) Hφ(𝐫𝐫)   for nearest neighbor 
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H12 (k) is specified in the in-secular equation 
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Fig.8  

Left: Band structure and first Brillouin 
zone from wikipedia. 

Right: Reproduced with Mathematica, γ0 
and a in arbitrary units. 

 



 C. Zone-folding approximation and metallicity 

From the symmetry (and periodic boundary conditions) we know that the 
allowed wave vectors “around” the nanotube circumference are quantized, 
namely, 

ψk(𝐫𝐫 + 𝐂𝐂h ) = ei𝐤𝐤∙𝐂𝐂hψk(𝐫𝐫)                                                                             (7) 

𝐂𝐂h = n𝐚𝐚𝟏𝟏 + m𝐚𝐚𝟐𝟐 

𝐤𝐤 = n′𝐛𝐛𝟏𝟏 + m′𝐛𝐛𝟐𝟐 

𝐤𝐤 ∙ 𝐂𝐂h = 2π(nn′ + mm′) = 2πl,          l is integer                                        (8) 

Along the nanotube axis, in contrast, the 
wave vectors are continuous. If we plot 
those allowed wave vectors onto the 
Brillouin zone of graphene, we will find a 
series of parallel lines defined by Eq. (8), 
See Fig.9. The idea of the zone-folding 
approximation is that the electronic band 
structure of a specific nanotube is given by 
superposition of the graphene electronic 
energy bands along the corresponding 
allowed k lines.                                                          Fig.9. Allowed k lines. [12] 
 

Metal is known for having filled states around Fermi level. In another word, 
to be “metallic”, the graphene K point is supposed to be among the allowed 
states. Otherwise the nanotube is semiconducting with a moderate band gap. 
For instance, take the highlighted point in Fig.9,  

𝐤𝐤 = 1
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Plugging into Eq. (8) yields     (n − m) = 3l                                                (9) 

The condition (n−m) =3l is always satisfied for armchair tubes and for the 
subset of the (n, 0) zigzag tubes with n multiples of 3. 
 

 



D. Density of states (DOS) and Van Hove singularities 

The density of states ∆N
∆E

 represents the number of available states for given 
energy interval. In this paragraph, theoretical calculation has been avoided, 
only experimental measurement and related physical concepts are sketched. 
The shape of the DOS depends on dimensionality, as shown below. These 
“spikes” in the DOS of 1D system are called Van Hove singularities and 
originate from the confinement properties in directions perpendicular to the 
tube axis.  

 

Fig.10: 

Left Top: Classifications of Carbon nanomaterials  

Left Bottom: DOS for different dimensionalities [13] 

Right Top: Van Hove singularities due to confinement of 1D electronic state on cutting 
lines [13] 
Right Bottom: Experimental spectra (solid line) compared with calculated data (dashed 
line). [14] 

With Scanning Tunneling Spectroscopy (STS), people could really measure 
DOS. [15] 



� dI
dU
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U=V
≈ ρsample (EF + eV)ρTip (EF)                                                       (10) 

It’s interesting to notice those “spikes” in the DOS of 1D nanomaterial 
caused by the so called “Van Hove singularities”.  Consider the energy and 
eigenstate of  an ideal nanotube which is confined along x and y axes (~nm) 
but infinite along z axis: 

ε = εi,j + ħ𝟐𝟐kz
2

2m
;                 ψ(x, y, z) = ψi,j(x, y)eikz                                       (11) 

In analogy with a rectangle, the solution for εi,j  and ψi,j(x, y) are similar to 
the 2D”particle in a box” problem.  [11] 

D(ε) = �Di,j(ε)
i,j

 

 Di,j(ε) = ∑ dNi,j

dk
dk
dεi,j = ∑ 2 ∙ 2 ∙ L

2π
[ m

2ħ2(ε−εi ,j )
]1/2

i,j = �
4L

hvi,j
,   ε > εi,j

0,       ε < εi,j

�                  (12) 

The first “2” comes from spin degeneracy; the second”2” is due to k has 
both positive and negative values;  vi,j is the velocity of electron with kinetic 
energy(ε − εi,j). Near the “watershed” at εi,j , DOS will disperse due to the 
term(ε − εi,j)−1/2, this trait is called “Van Hove singularities”. 

V. Other Physical Properties 

Compared with other materials, carbon nanotubes have a series of 
extraordinary properties. (Fig 11) First of all, their sizes are small enough to 
be used in microscopic research. For instance, nanotube is already used to 
replace traditional tungsten tip because its shape is relatively stable. Second, 
its tensile strength extremely larger than high-strength steel alloys (45 billion 
pascals versus ~2 billion pascals). Third, its current carrying capacity is 
estimated to be 1billion amps per square centimeter (copper wires burn out 
at about 1 million amps per square centimeter). Besides, its heat 
transmission efficiency and temperature stability are both appreciably larger 
than traditional materials. 



 

Fig.11. Other properties of Carbon nanotubes [5] 
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