Electronic Properties of Graphene

Qinlong Luo qluo@utk.edu

Instructor: Prof. Dagotto Solid State II Mar 18, 2010 Department of Physics University of Tennessee, Knoxville

OUTLINES

1. Introduction

2. Crystal Structure

3. Dirac Cones

(1) theoretical results
(2) experimental results

4. Conclusions

Introduction

- 1935 L.D. Landau and R.E. Peierls
- 1946 P. R. Wallace
 P.R. Wallace, Physical Review 71, 622-634 (1947)
- 2004 K.S. Novoselov
 - K.S. Novoselov et al, Science 306, 5696 (2004)
- **2005** K.S. Novoselov

K.S. Novoselov et al, Nature 438, 197-200 (2005)

Introduction

what is graphene?

carbon

- monolayer
- honeycomb

$$\begin{array}{c}
\textbf{Dirac cones}\\
H = -t_1 \sum_{\langle i,j \rangle,\sigma} (a^{\dagger}_{i,\sigma}b_{j,\sigma} + h.c.) - t_2 \sum_{\langle \langle i,j \rangle \rangle,\sigma} (a^{\dagger}_{i,\sigma}a_{j,\sigma} + b^{\dagger}_{i,\sigma}b_{j,\sigma} + h.c.)\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}a_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}))\\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma}) \\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}a_{k,\sigma} + T_3(a^{\dagger}_{k,\sigma}b_{k,\sigma} + b^{\dagger}_{k,\sigma}b_{k,\sigma}) \\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma}) \\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma}) \\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma} + T_2b^{\dagger}_{k,\sigma}b_{k,\sigma}) \\
H = \sum_{k,\sigma} (T_1a^{\dagger}_{k,\sigma}b_{k,\sigma}) \\
H = \sum_{k,\sigma} (T_1a^{$$

Dirac cones

$$E_{\pm}(\vec{k}) = \pm t_1 \sqrt{3 + f(\vec{k})} - t_2 \vec{k} \qquad t_2 \ll t_1$$
expanding around point $K = (\frac{2\pi}{3a}, \frac{2\pi}{3\sqrt{3}a})$ as
with $|\vec{q}| \ll \vec{K}$

$$E_{\pm}(\vec{q}) \approx \pm t_1 \sqrt{(\frac{3a}{2}q_x)^2 + (\frac{3a}{2}q_x)^2 + O(q_x^3) + O(q_y^3)}$$
 $= \pm v_F |\vec{q}| + O[q^2]$
 $v_F = \frac{3at_1}{2} \simeq 1 \times 10^6 m/s$

а

SdHOs frequency vs. carrier concentration

B (T) 12 8 10 K 25 50 V_g (V) 75 100

Shubnikov-de Hass oscillations (SdHOs)

Cyclotron mass vs. carrier concentration

K.S. Novoselov et al, Nature **438**, 197-200 (2005)

Dirac cones

$$\beta \approx 1.04 \times 10^{-15} \,\mathrm{Tm}^2 \ (\pm 2\%)$$

plot the dependence of SdHO frequency B_F on gate voltage V_g by using standard fan diagrams

$$V_g \propto n$$

Dirac cones

Semi-classical expression (Ashcroft & Mermin):

$$B_F = \frac{\hbar}{2\pi e} S(E)$$

$$m_c = \frac{\hbar^2}{2\pi} \frac{\partial S(E)}{\partial E}$$

where $S(E) = \pi k^2$ is the area in k-space of the orbits at the Fermi energy

Dirac cones $B_F = \frac{\hbar}{2\pi e} S(E) \qquad \qquad B_F = \beta n \qquad \qquad S(E) = \frac{2\pi e}{\hbar} \beta n \propto n$ $\frac{\partial S(E)}{\partial E} \propto n^{1/2}$ $m_c = \frac{\hbar^2}{2\pi} \frac{\partial S(E)}{\partial E} \qquad m_c \propto n^{1/2}$ $S(E) = \pi k^2 + S(E) \propto E^2$ $\frac{\partial S(E)}{\partial E} \propto \sqrt{S(E)}$ $E \propto k = \hbar c^* k$ $c^* \approx 10^6 m/s$

Conclusions

- A tight-binding model is investigated to calculate the band dispersion of graphene
- Linear dependence of energy on momentum is deduced from quantum oscillations and electric field effect experiments
 - Both calculation and the experiments lead to a linear band dispersion with the same Fermi velocity $v_F \approx 10^6 m/s$

Thank you!

Comments

- The detail information of relativistic theory about graphene can be found in:
 - A.H. Castro Neto *et al*, Rev. Mod. Phys **81**, 109-162 (2009)
- and also
- http://en.wikipedia.org/wiki/Graphene