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In this paper, the elementary electronic properties of graphene are generally introduced. This
paper mainly focus on the energy-momentum dispersion of graphene, investigated by a tight-binding
model theoretically and Shubnikov-de Haas oscillations experimentally. It shows that the carriers
in graphene are massless Dirac fermions, which should be described by Dirac’s relativistic equation.

PACS numbers:

I. INTRODUCTION

Quantum electrodynamics (QED) has made a clear understanding of phenomena from particle physics to astro-
physics (high energy). But these phenomena have never observed in condensed matter system (low energy), until
the discovery of graphene six years ago [1, 2]. The electron transport in graphene is essentially described by Dirac’s
relativistic equation, not the non-relativistic Schrödinger equation.

Graphene is made of carbon atoms arranged on a honeycomb lattice with lattice constant a = 1.42Å [6]. It can
be also considered as composed of benzene rings stripped out from their hydrogen atoms. This two-dimensional
(2D) material plays a key role since it is the basis of all the graphitic forms (see Fig. 1): graphene can be wrapped
up into 0D Fullerenes [9], rolled along a given direction into 1D carbon nanotubes [10], and stacked layer by layer
into 3D graphite which exists in pencil. The reasons for discovering graphene so late are mainly [6]: (1) graphene
was expected to be unstable in the free state before its discovery; (2) no experimental tools existed to detect the
one-atom-thick graphene. Graphene was eventually spotted due to the subtle optical effect it creates on top of a
chosen SiO2 substrate, which allows its obeservation with an ordinary optical microscope.

The structure flexibility of graphene and its two-dimensionality provide a lot of unexpected electronic prop-
erties. The most interesting property is that its low-energy excitations are massless Dirac fermions with speed
vF ' 1.0× 106m/s [3]. These unusual Dirac fermions in the magnetic fields lead to the anomalous integer quantum
Hall effect [3]. Another interesting property is the Klein paradox, describing that the Dirac fermions can be
transmitted with probability 1 through a classically forbidden region [8]. And the disorder in graphene results in
some interesting properties [6], such as ripples, localized states near edges, impurity states and topological lattice
defects. All these presented and unpresented interesting properties make graphene a hot topic in the condensed
matter physics community.

This paper is organized as follows: the crystal structure of graphene is discussed in Sec. II. And Sec. III focuses on
the band dispersion calculation theoretically. Sec. IV provides some experiments,especially the Shubnikov-de Haas
oscillations (SdHO) which is consist with the calculation above. And the conclusions will be found in Sec. V.

II. THE CRYSTAL STRUCTURE AND THE sp2 HYBRIDIZATION IN GRAPHENE

The crystal structure of graphene in Fig. 2 shows that graphene is made of carbon atoms arranged in hexagonal
honeycomb-like structure. It can be imaged as a triangular lattice with a basis of two atoms which are shown as
yellow and blue solid dots. The two lattice vectors can be written as:
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where a ' 1.42Å is the carbon-carbon distance.

In the Brillouin zone (BZ), the Dirac cones are located at two corners K and K ′, which are of particular importance.
Their positions in the reciprocal space are:
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FIG. 1: Mother of all graphitic forms. Graphene is a 2D building material for carbon materials of all other dimensionalities.
It can be wrapped up into 0D Fullerenes, rolled into 1D nanotubes or stacked into 3D graphite. Taken from Ref. [5]
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And the three nearest-neighbor (NN) vectors in real space read:
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While the six next nearest-neighbor (NNN) vectors read:

δ′1 = ±a1, δ′2 = ±a2, δ′3 = ±(a2 − a1). (4)

The sp2 hybridization in carbon atoms is of great importance. The hybridization between one s orbital and two p
orbitals forms a σ band which makes the lattice structure robust, and leads to a hexagonal planar structure. These
bands have a filled shell due to the Pauli principle. The other p orbital is perpendicular to the planar. This p orbitals
can bind with the neighboring carbon atoms, which forms a π band. It is half-filled because this p orbital has one
extra electron.
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FIG. 2: Honeycomb lattice and its Brillouin zone. Left: lattice structure of graphene, made out of two interpendetrating
triangular lattices (a1 and a2 are the lattice unit vectors, and δi, i=1,2,3 are the nearest-neighbor vectors). Right: corresponding
Brillouin zone. The Dirac cones are located at the K and K′ points. Taken from Ref. [6]

III. BAND DISPERSION CALCULATION

It was P. R. Wallace who first calculate the band dispersion of graphene using a tight-binding model. The Hamil-
tonian in second quantization language reads:

H = −t1
∑

<i,j>,σ

(a†i,σbj,σ + h.c.)− t2
∑

<<i,j>>,σ

(a†i,σaj,σ + b†i,σbj,σ + h.c.) (5)

where ai,σ (a†i,σ) annihilates (creates) an electron with spin σ on site Ri on sublattice A, while bi,σ (b†i,σ) annihilates
(creates) an electron with spin σ on site Ri on sublattice B. And t1 is the NN hopping amplitude while t2 is the NNN
hopping amplitude.

Making a Fourier transformation of H results in the Hamiltonian in momentum space [12], which is given by:
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where the coefficients reads:
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This Hamiltonian can be represented by a 2 × 2 matrix and the diagonalization of this matrix gives the band
dispersion as:
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where ”+” applies to the upper band while ”−” the lower band. From Eq.( 11), the band structure is symmetric
around zero energy if t2 = 0. But the electron-hole symmetry is broken and the upper and lower bands become
asymmetric for finite t2. The whole band dispersion of graphene is shown in Fig.( 3) with finite t1 and t2. And the
bands near one of the Dirac cones is also shown in the zoom in figure in Fig.( 3). This dispersion can be obtained by
expanding Eq.( 11) aound the K point, as ~k = ~K + ~q (the vector K is given by Eq.( 2)) with |~q| ¿ ~K, and ignoring
the t2 term since t2 is small enough. This approximation gives the results as:
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√
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= ±vF |~q|+ O[q2] (14)

FIG. 3: Electronic dispersion in the honeycomb lattice. Left: energy spectrum (in units of t) for finite values of t1 and t2, with
t1 = 2.7eV and t2 = −0.2t. Right: zoom in of the energy bands close to one of the Dirac points. Taken from Ref. [6].

This equation gives the Fermi velocity of the carriers in graphene with a value vF = 3at1
2 ' 1 × 106m/s. And

this dispersion relation shows that the carriers in graphene is Dirac fermions which should be described by Dirac
relativistic equation. And the description of Dirac fermions in graphene is specified in Ref. [6] which is not shown
here.

IV. ELECTRIC FIELD EFFECT AND THE SHUBNIKOV-DE HAAS OSCILLATIONS

The massless Dirac fermions in graphene was first discovered by K.S. Novoselov [3], who also first found graphene
in 2004 [1]. In his electric field effect experiment (shown in Fig. 4), it was found that the conductivity σ is linear
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FIG. 4: Electric field effect in graphene. a, Scanning electron microscope image of graphene. b,c, Changes in graphene’s
conductivity σ (b) and Hall coefficient RH (c). d, Maximum values of resisitivity ρ = 1/σ (circles) exhibited by devices with
different mobilities µ. Taken from Ref. [3]

with the gate voltage Vg for both polarities. The Hall coefficient measurement suggests that the concentrations of
electrons (holes) are induced by positive (negative) gate voltages, which is called electrical (hole) doping. In Fig. 4c,
the linear dependence 1

RH
∝ Vg yields n = αVg with α ≈ 7.3× 1010cm−2V −1, which is consistent with the theoretical

calculation n
Vg
≈ 7.2× 1010cm−2V −1.

Fig. 5 shows the Shubnikov-de Haas oscillations (SdHOs) in graphene for different magnetic fields B, gate voltage
and temperatures. From these results, the relation between fundamental SdHO frequency BF and the gate voltage Vg

can be determined by using standard fan diagrams. This results in the linear dependence BF = βn with β ≈ 1.04×
10−15Tm2 in Fig. 6a. Fig. 6d shows square-root denpedence between the cyclotron mass mc and the concentrations
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FIG. 5: Quantum oscillations in graphene. SdHO at constant gate voltage Vg = 60eV as a function of magnetic field B (a) and
at constant B = 12T as a function of Vg (b). Taken from Ref. [3].

n of the carriers in graphene, which is mc ∝ n1/2. Within the semiclassical approximation [11], the cyclotron mass is
defined as:

mc =
h̄2

2π

∂S(E)
∂E

(15)

where S(E) = πk2 is the area in k-space of the orbits at the Fermi energy E(k). And the fundamental SdHO
frequency is defined as :

BF =
h̄

2πe
S(E) (16)

Combined with the experimentally found dependences mc = αn1/2 and BF = (h/4e)n, we can obtain:

S(E) =
2πe

h̄

h

4e
n = π2n (17)

∂S(E)
∂E

=
2π

h̄2 αn1/2 (18)

(19)

Then we can obtain ∂S(E)
∂E ∝ S1/2, which means S(E) ∝ E2. Combining this relation with S(E) = πk2 yields the

linear dispersion E = vF k and the best fit to the experimental data yields vF ≈ 106m/s, in perfect agreement with
the band dispersion calculation in Sec. III. This shows the Dirac fermions in graphene from experimental aspect.

V. CONCLUSIONS

In conclusion, some electronic properties of graphene are introduced. All these interesting properties make graphene
a key material in condensed matter physics. A tight-binding Hamiltonian is investigated to calculate the band
dispersion of graphene. And quantum oscillation and electric field effect experiments are introduced as well. Both
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FIG. 6: Dirac fermions of graphene. a, Dependence of BF on carrier concentration n (positive n corresponds to electrons;
negative to holes). b, Examples of fan diagrames used in the analysis to find BF . Taken from Ref. [3]

calculation and the experiments lead to a linear band dispersion E = vF k with the same Fermi velocity vF = 106m/s.
Therefore, we can demonstrate the exist of Dirac Fermions in graphene.
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