A Glimpse of Heavy Fermions

Hua Chen Solid State II Apr 22, 2008

Why "heavy"

$$C = \gamma T + AT^3 \qquad \gamma \propto m^*$$

 In heavy fermion materials, the effective mass can be as large as 1000*m_e

 First heavy fermion material: CeAl₃ by Andres et al.

What's special in heavy fermion systems: f-electrons

- Lattice of certain *f*-electrons (most Ce, Yb or U) in metallic environment
- La³⁺: $4f^0$, Ce³⁺: $4f^1$ (J = 5/2), Yb³⁺: $4f^{13}$ (J = 7/2)
- partially filled inner 4f/5f shells → localized magnetic moment

Preliminary: Kondo effect

(Jun Kondo '63)

local móment

conduction electron

J: hybridization
AF coupling J < 0

Kondo effect (cont.)

T_K: characteristic Kondo temperature

$$T_K \propto \exp(-1/\rho J)$$

Below T_K impurity spin is progressively screened: Kondo singlet

Microscopic model of impurities: Anderson model

$$H = H_{s} + H_{f} + H_{sf} + H_{U}$$
 Conduction electron f-electron hybridization repulsion

$$\begin{split} H &= \sum_{k,\mu} \epsilon_k n_{k\mu} + \sum_{k,\mu} V(k) [c_{k\mu}^{\dagger} f_{\mu} + f_{\mu}^{\dagger} c_{k\mu}] \\ &+ E_f n_f + U n_f {\uparrow} n_{f \downarrow}. \end{split}$$

Hybridization width $\Gamma = \pi \rho_F V^2$

$$\Gamma << -\varepsilon_d, U + \varepsilon_d$$
 formation of local moment

s-d (s-f) exchange model

$$H = \sum_{k,\mu} \epsilon_k n_{k\mu} - (\frac{J}{N}) \sum_{k,k'} \sum_{\mu,\mu'} \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{\sigma}}_{\mu\mu'} c^{\dagger}_{k\mu} c_{k'\mu'}$$

Second order perturbation

$$R_{impurity} = R_0 [1 + 4J \rho_F \ln \left(\frac{k_B T}{D}\right) + \cdots]$$

Temperature dependent second order term in resistivity

Antiferromagetic coupling Resistivity minimum

Microscopic model of heavy fermion: Anderson lattice model

Kondo system:

Heavy fermion system:

Single d (or f) impurity

periodic f ions

Anderson model

Anderson lattice model

$$\begin{split} H &= \sum_{k,\mu} \epsilon_k n_{k\mu} + \sum_{l,\mu} E_0 n_{l\mu}^f + U \sum_l n_{l\uparrow}^f n_{l\downarrow}^f \\ &+ \frac{V}{\sqrt{N}} \sum_{k,l,\mu} [c_{k\mu}^\dagger f_{l\mu} e^{-i \mathbf{k} \cdot \mathbf{l}} + f_{l\mu}^\dagger c_{k\mu} e^{i \mathbf{k} \cdot \mathbf{l}}]. \end{split}$$

Calculation techniques and approximations

Results

V is the strength of the slave boson field

• (a) Dispersion relation. (b) Renormalized density of states

The peaks of density of states near the Fermi energy lead to the large effective mass

$$\frac{m^*}{m} = \frac{\rho^*}{\rho}$$

 $\Delta_g \sim T_K$

Kondo insulator

- If the lower band is filled, the system is an insulator (or semiconductor)
- The gap is dependent on temperature (different from conventional semiconductors)

Summary

- Heavy fermion is one of the most challenging and attractive areas in condensed matter physics.
 - Many important concepts and areas originate from the study of this problem:
 - Slave boson, composite fermion, even high T_c superconductivity
 - Current interests:
 - Heavy fermion superconductivity
 - Quantum criticality in heavy fermion systems