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Ordered Systems

Periodic Potentials

Blochs Theorem:

ψi (r) =
∑

G ci ,k+Ge [i(k+G)·r ]

Figure: Extented wave function
(Bloch Waves) [2]

V(r)

r

Figure: Periodic Potential
approximated as a regular set of
square wells

Electron wave functions
characterized as Bloch waves
existing throughout the lattice.
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Ordered Systems

Conductivity

Boltzmann transport equation:

σ(T ) = σ0 − Aσ2
0T n

where σ0 is the residual conductivity due to impurity scattering.
It is important to note that this conductivity is a result of freely
propogating electrons. As T increases scattering increases due to
collisions so that A > 0 and n is a natural number.

However for strongly disordered systems this breaks down! A can
be positive or negative and n is typically 1

2 .
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Strongly Disordered Systems

Localization Part I

Localization

Ψ(r)| = e |r |/ξ

ξ : Localization Length

Figure: Wave function of a
localized state with localization
length ξ [2]

V(r)

r

Figure: Strongly varying potential
wells [8]
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Strongly Disordered Systems

Localization Part II

Two wells close to one
another(large
wavefunction overlap)
have will usually have a
large difference in energy

Two wells with similar
energy will be far apart
(little wavefunction
overlap)

As the system increases in
size localization increases

V(r)

r

E

Figure: Schematic of a random
potential
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Strongly Disordered Systems

Experimental Verification

Localization of ultrasound in a
three-dimensional elastic
network. Used 0.3-3.0 MHz
ultrasound frequencies through
brazed aluminium beads

Figure: Brazed aluminium beads
[7]

Figure: Brazed aluminium beads
4.011± 0.03 nm in diameter [7]
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Strongly Disordered Systems

Experimental Verification

Diffuse waves at 0.20 MHz [7]
Localized waves at 2.4 MHz
[7]

Notice that localization is scale dependent!
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Itermediate Disorder

Introduction to Scaling Theory

Scaling theory uses
conductance,G , as a measure
of disorder. We define a
dimensionless conductance g
on scale size L

g = G
e2/~

Begin at the microscopic scale
and build the system larger:

g(L )

g(2L )
d

d
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Itermediate Disorder

Scaling Theory

Two very different regimes:

Weak Disorder:
For L >> l

g(L) = σLd−2

where the conductivity follows
Ohm’s Law: σ = nle2

~kF

Strong Disorder:
For L >> ξ

g(L) ∝ e−L/ξ

g(L) evolves smoothly from one regime to the other. The limiting
behavior reached depends on microscopic disorder g0 = g(l) which
depends on the scale l and dimensionality d
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Itermediate Disorder

The Scaling Function

The Scaling Function:

β(g) = d(lng)
d(lnL)

The change in disorder as a system gets bigger depends on
previous length scales
Large Conductance (very weak
disorder):

β(g) = (d − 2)

Notice that for d → 2, β → 0

Small Conductance (strong
disorder):

β(g) = ln(g/gc)

where gc is a characteristic
conductance. Notice that β is
independent of dimensionality.
In this limit g < gc so that
β < 0.
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Itermediate Disorder

Pertubative Regime

For weak disorder (large g) a correction can be added to our
previous equation:

β(g) = (d − 2)− a
g

From this we can see that β is always less than the very weak
disorder regime (region where Ohm’s Law is valid). In other words
the introduction of the smallest ammount of disorder will decrease
β.
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Itermediate Disorder

Scaling Function for Different Dimensionalities

Strong Disorder (non-Ohmic)
β(g) = ln(g/gc)

Weak Disorder (Ohmic)
β(g) = (d − 2)

Figure: The β function vs conductance g for different dimensions d . [2]
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One and Two Dimensional Systems

One and Two Dimensional Systems

For all g , β(g) < 0. So at
large enough length scales only
localized behavior is possible.
Suppose you start with a
system with large conductivity
at the mean free path length
scale g(l) = g0. As the length
scale increases one will move
down the length curve to the
strongly disordered limit
β(g) = ln(g/gc).
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Three Dimensional Systems

Three Dimensional Systems

Let β(g3) = 0
(1) g0 > g3: Increasing the
length scale from l will
increase g moving one up β(g)
to the limit of no disorder
(Ohm’s Law).
(2) g0 < g3: Increasing the
length scale from l will
decrease g so that one reaches
the limit of strong disorder
(localized states).
(1) → metal
(2) → insulator
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Temperature Dependence

Temperature Dependence

As temperature decreases so does conductance - a signature of
localization

σ3D = σ0 + e2

~π3
1
aT p/2

σ2D = σ0 + p
2

e2

~π3 ln( T
T0

)

σ1D = σ0 − ae2

~π3 T
−p/2

where p is an index depending
on the scattering mechanism,
dimensionality, ...

Figure: Resistivity vs. lnT for a
PdAu film [2]
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Summary

Important Points

Ordered systems have electron wave functions characterized as Bloch Waves -
freely propogating throughout the crystalline structure. Ohm’s Law works well
here.

Disordred systems are very different. If disorder is strong enough and if the scale
size is big enough electron wave functions will become localized.

One popular way of describing disorder is using Scaling Theory which uses
conductance as a measure of disorder.

If a system is disordered at a small scale size then it will always be disordered.

If a system is ordered at a small scale size the dimensionality and size of the
system become important

One and two dimensional systems always tend to the disordered limit as scale
size increases.

Three dimensional systems are dependent on the microscopic scale going to the
ordered or disordered limits.
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