Lectures: Condensed Matter II

- 1 Quantum dots
- 2 Kondo effect: Intro/theory.
 - 3 Kondo effect in nanostructures

Luis Dias – UT/ORNL

Basic references for today's lecture:

A.C. Hewson, *The Kondo Problem to Heavy Fermions*, Cambridge Press, 1993.

R. Bulla, T. Costi, Prushcke, Rev. Mod. Phys (in press) arXiv 0701105.

K.G. Wilson, Rev. Mod. Phys. 47 773 (1975).

Lecture 2: Outline

- Quantum Dots: Review.
- Kondo effect: Intro.
- Kondo's original idea: Perturbation theory.
- Numerical Renormalization Group (NRG).
- s-d and Anderson models.
- NRG local density of states.

Kondo effect

μ_{Fe}/μ_B ²

Y Zr Nb Mo Re Ru Rh

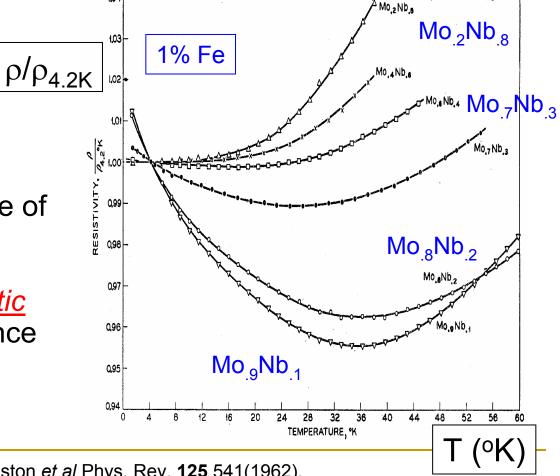
ELECTRON CONCENTRATION

Magnetic impurity in a metal.

30's - Resisivity measurements:
 minimum in ρ(T);

 T_{min} depends on $c_{imp.}$

 60's - Correlation between the existence of a Curie-Weiss component in the susceptibility (<u>magnetic</u> <u>moment</u>) and resistance minimum.

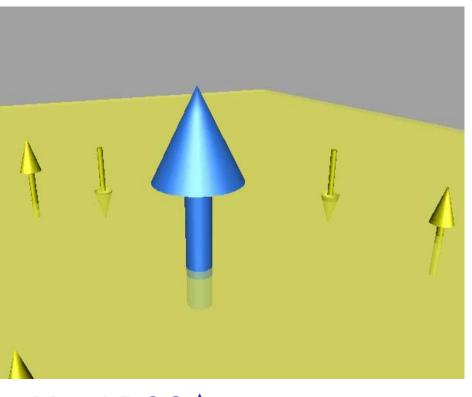


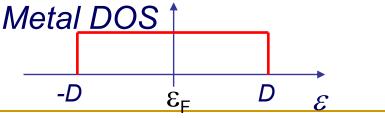
Top: A.M. Clogston *et al* Phys. Rev. **125** 541(1962). Bottom: M.P. Sarachik *et al* Phys. Rev. **135** A1041 (1964).

Kondo's explanation for T_{min} (1964)

$$\begin{split} H_{\text{s-d}} &= J \sum_{\mathbf{k},\mathbf{k}'} S^{+} \, \mathbf{c}_{\mathbf{k}\downarrow}^{\dagger} \mathbf{c}_{\mathbf{k}'\uparrow} + S^{-} \, \mathbf{c}_{\mathbf{k}\uparrow}^{\dagger} \mathbf{c}_{\mathbf{k}'\downarrow} \\ &\quad \quad \text{Spin: J>0 AFM} \\ &\quad + S_{z} \left(\mathbf{c}_{\mathbf{k}\uparrow}^{\dagger} \mathbf{c}_{\mathbf{k}'\uparrow} - \mathbf{c}_{\mathbf{k}\downarrow}^{\dagger} \mathbf{c}_{\mathbf{k}'\downarrow} \right) \\ &\quad + \sum_{\mathbf{k}} \mathbf{e}_{\mathbf{k}} \, \mathbf{c}_{\mathbf{k}\sigma}^{\dagger} \mathbf{c}_{\mathbf{k}\sigma} \\ &\quad \quad \text{Metal: Free waves} \end{split}$$

- Many-body effect: virtual bound state near the Fermi energy.
- AFM coupling (J>0)→ "spin-flip" scattering
- Kondo problem: s-wave coupling with spin impurity (s-d model):



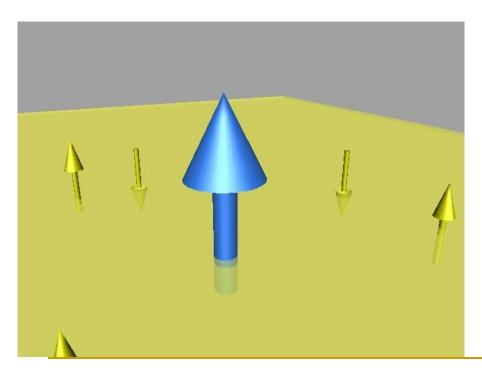


Kondo's explanation for T_{min} (1964)

- Perturbation theory in J^3 :
 - Kondo calculated the conductivity in the linear response regime

$$R_{\text{imp}}^{\text{spin}} \propto J^2 \left[1 - 4J \rho_0 \log \left(\frac{k_B T}{D} \right) \right]$$

$$R_{\text{tot}}(T) = aT^5 - c_{\text{imp}}R_{\text{imp}}\log\left(\frac{k_BT}{D}\right)$$



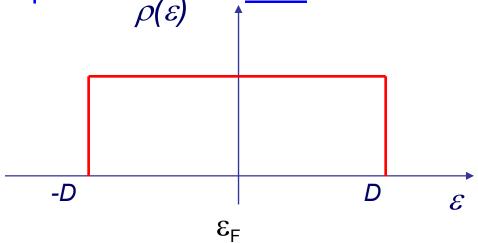
$$T_{\min} = \left(\frac{R_{\text{imp}}D}{5ak_B}\right)^{1/5} c_{\text{imp}}^{1/5}$$

- Only <u>one</u> free paramenter: the Kondo temperature T_K
 - Temperature at which the perturbative expansion diverges. $k_B T_K \sim De^{-1/2J\rho_0}$

Kondo's explanation for T_{min} (1964)

$$R_{\text{tot}}(T) = aT^5 - c_{\text{imp}}R_{\text{imp}}\log\left(\frac{k_B T}{D}\right)$$

What is going on? Theory diverges <u>logarithmically</u> for $T \to 0$ or $D \to \infty$. (T<T_K \to perturbation expasion no longer holds) Experiments show <u>finite</u> R as $T \to 0$ or $D \to \infty$.



A little bit of Kondo history:

- Early '30s: Resistance minimum in some metals
- Early '50s: theoretical work on impurities in metals "Virtual Bound States" (Friedel)
- 1961: Anderson model for magnetic impurities in metals
 - 1964: s-d model and Kondo solution (PT)
- 1970: Anderson "Poor's man scaling"
- 1974-75: Wilson's Numerical Renormalization Group (non PT)
- 1980 : Andrei and Wiegmann's exact solution

A little bit of Kondo history:

- Early '30s : Resista
- Early '50s: theoreti
 "Virtual Bound State
- Kenneth G. Wilson Physics Nobel Prize in 1982 "for his theory for critical phenomena in connection with phase transitions"
- 1964: s-d model and Kon solution (PT)
- 1970: Anderson "Poor's men scaling"
 - 1974-75: Wilson's Numerical Renormalization Group (non PT)
- 1980 : Andrei and Wiegmann's exact solution

Kondo's explanation for T_{min} (1964)

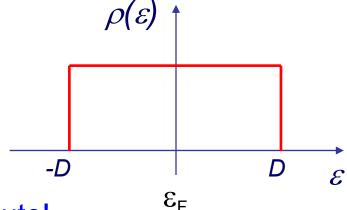
$$R_{\text{tot}}(T) = aT^5 - c_{\text{imp}}R_{\text{imp}}\log\left(\frac{k_BT}{D}\right)$$

Diverges <u>logarithmically</u> for $T \rightarrow 0$ or $D \rightarrow \infty$.

What is going on? $\{ (T < T_K \to \text{perturbation expassion no longer holds}) \\ \text{Experiments show } \underline{finite} \text{ R as } T \to 0 \text{ or } D \to \infty.$

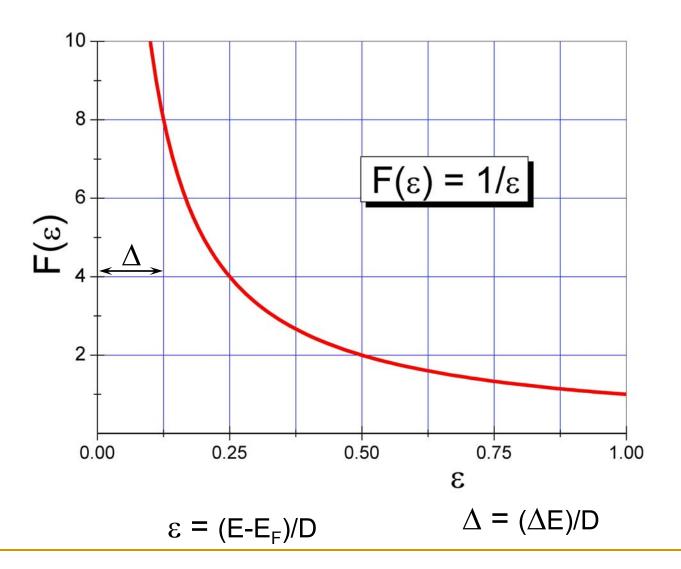
- The log comes from something like:

$$\int_{k_BT/D}^{1} \frac{d\varepsilon}{\varepsilon} = -\log\left(\frac{k_BT}{D}\right)$$

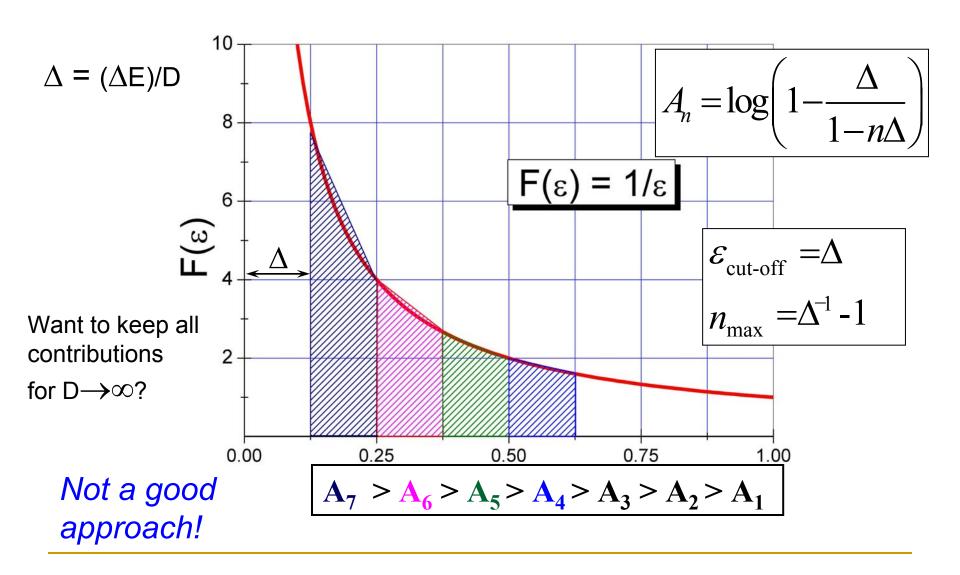


All energy scales contribute!

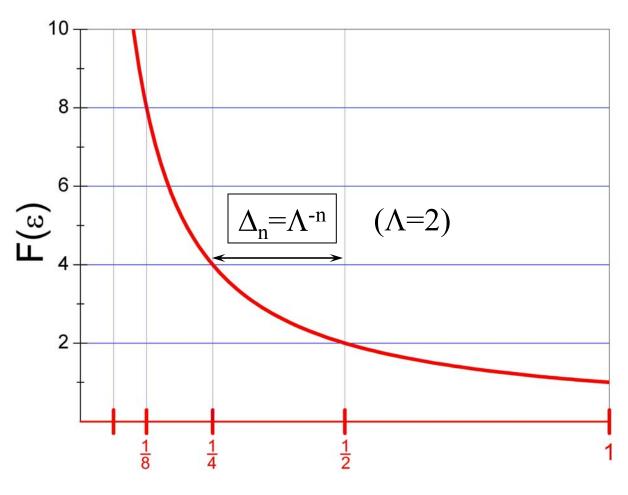
"Perturbative" Discretization of CB



"Perturbative" Discretization of CB

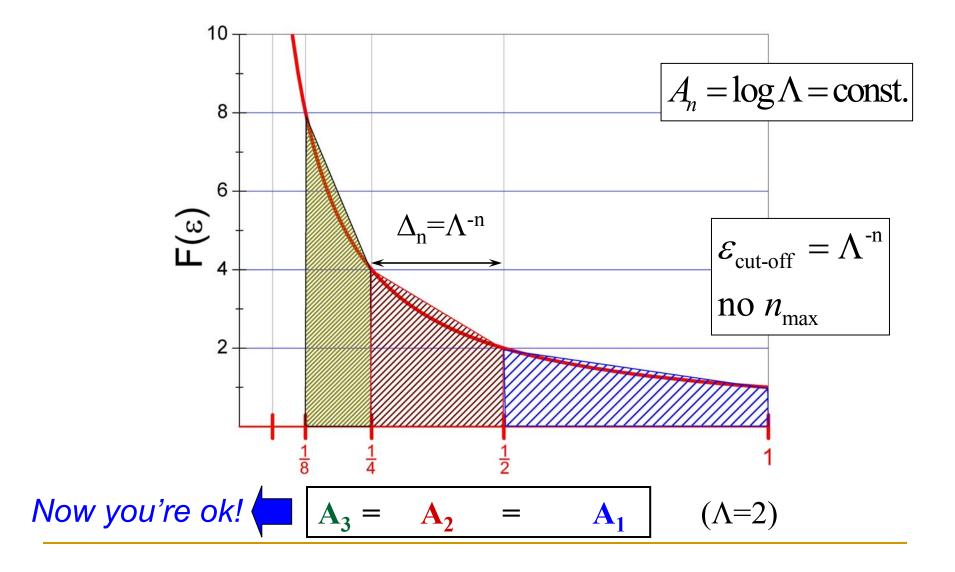


Wilson's CB Logarithmic Discretization



$$\varepsilon = (E-E_F)/D$$

Wilson's CB Logarithmic Discretization



Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin impurity (s-d model):

$$H_K = \int_{-1}^{1} dk a_k^{\dagger} a_k - J A^{\dagger} \sigma A \cdot \tau, \qquad (VII.4)$$

where

$$A = \int_{-1}^{1} a_k dk,$$

and

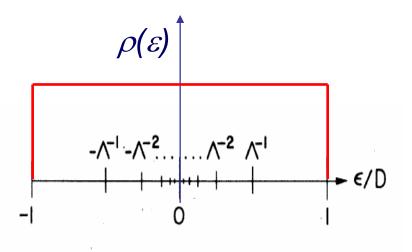
$$\{a_k, a_{k'}^+\} = \delta(k - k').$$

Kondo s-d Hamiltonian

$$H_{s-d} = J \sum_{k,k'} S^{+} c_{k\downarrow}^{\dagger} c_{k'\uparrow} + S^{-} c_{k\uparrow}^{\dagger} c_{k'\downarrow}$$

$$+ S_{z} \left(c_{k\uparrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right)$$

$$+ \sum_{k} e_{k} c_{k\sigma}^{\dagger} c_{k\sigma}$$

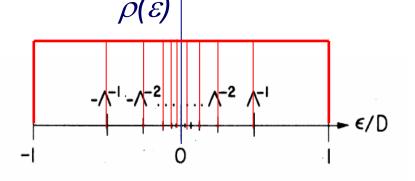


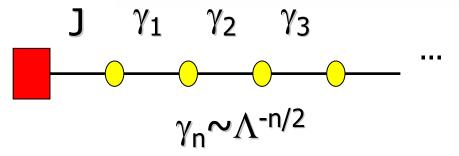
- From continuum k to a discretized band.
- Transform H_{s-d} into a linear chain form (exact, as long as the chain is infinite):

$$H_K = \sum_{n=0}^{\infty} \epsilon_n (f_n + f_{n+1} + f_{n+1} + f_n) - 2J f_0 + \sigma f_0 \cdot \tau,$$

"New" Hamiltonian (Wilson's RG method)

- Logarithmic CB discretization is the key to avoid divergences!
- Map: conduction band → Linear Chain
 - Lanczos algorithm.
 - □ Site $n \rightarrow$ new energy scale:
 - \square $D\Lambda^{-(n+1)} < |\epsilon_k \epsilon_F| < D\Lambda^{-n}$
 - Iterative numerical solution

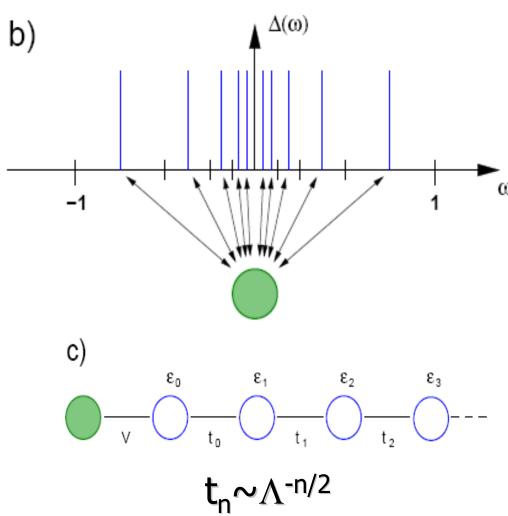




Logarithmic Discretization.

Steps:

- Slice the conduction band in intervals in a log scale (parameter Λ)
- Continuum spectrum approximated by a single state
- Mapping into a tight binding chain: sites correspond to different energy scales.



Wilson's CB Logarithmic Discretization

• Logarithmic Discretization (in space):

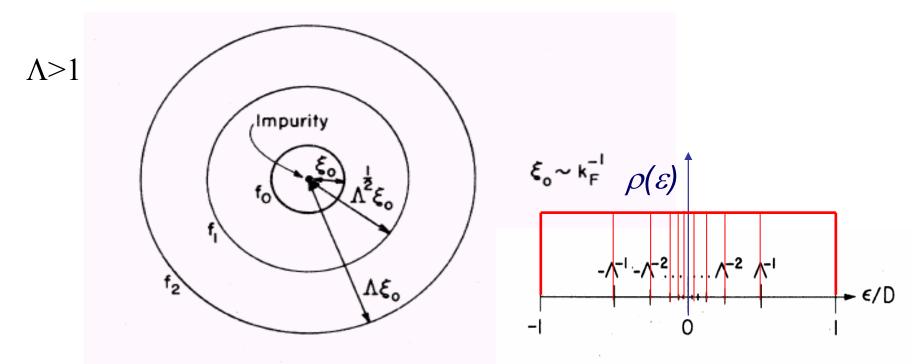


FIG. 4. Spherical shells in r space depicting the extents of the wave functions of f_n . Within their shells, every wave function has oscillations so that they are mutually orthogonal. Alternately one can show that, in the wave-vector space,

Wilson's CB Logarithmic Discretization

• Logarithmic Discretization (in energy):

 $\Lambda > 1$

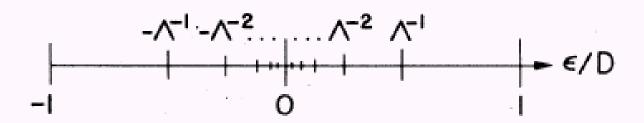
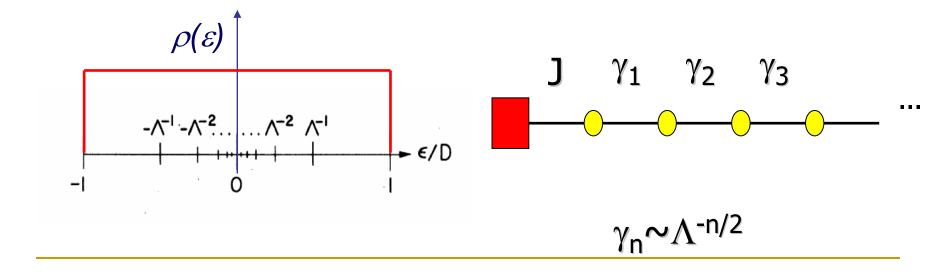


FIG. 1. Logarithmic discretization of the conduction bond. The Fermi energy is at zero and the top and bottom of the conduction bond at $k \equiv \epsilon/D = +1$ and -1, respectively.

"New" Hamiltonian (Wilson)

Recurrence relation (Renormalization procedure).

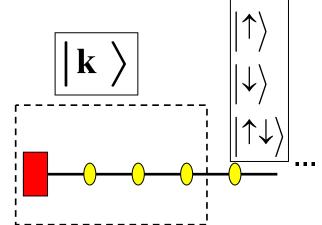
$$H_{N+1} = \Lambda^{\frac{1}{2}}H_N + f_{N+1} + f_N + f_N + f_{N+1}$$



"New" Hamiltonian (Wilson)

- Suppose you diagonalize H_N getting E_k and |k> and you want to diagonalize H_{N+1} using this basis.
- First, you expand your basis:

$$\begin{aligned} |\Omega; k\rangle &= |k\rangle, \\ |\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + |k\rangle, \\ |-\frac{1}{2}; k\rangle &= f_{N+1,-\frac{1}{2}} + |k\rangle, \\ |\frac{1}{2}, -\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + f_{N+1,-\frac{1}{2}} + |k\rangle. \end{aligned}$$



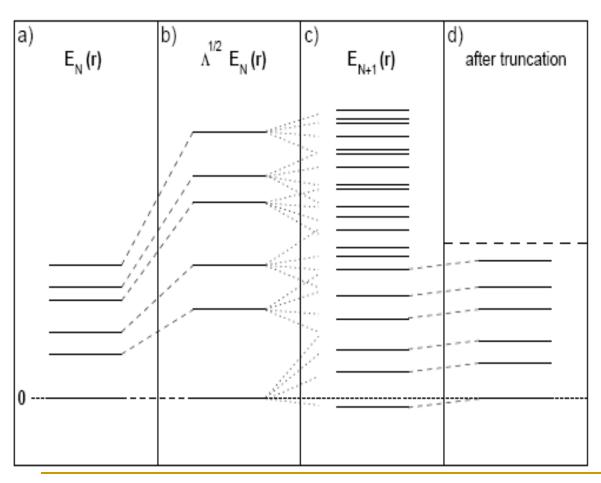
Then you calculate <k,a|f*_N|k',a'>,
<k,a|f_N|k',a'>and you have the matrix elements for H_{N+1} (sounds easy, right?)

Intrinsic Difficulty

- You ran into problems when N~5. The basis is too large! (grows as 2^(2N+1))
 N=0; (just the impurity); 2 states (up and down)
 N=1; 8 states
 N=2; 32 states
 N=5; 2048 states
 (...) N=20; 2.199x10¹² states:
 1 byte per state → 20 HDs just to store the basis.
 - □ And we might go up to N=180; 1.88x10¹⁰⁹ states.
 - Can we store this basis?
 (Hint: The number of atoms in the universe is ~ 10⁸⁰)
- Cut-off the basis → lowest ~1500 or so in the next round (Even then, you end up having to diagonalize a 4000x4000 matrix...).

Renormalization Procedure

$$H_{N+1} = \Lambda^{\frac{1}{2}}H_N + f_{N+1} + f_N + f_N + f_{N+1}$$



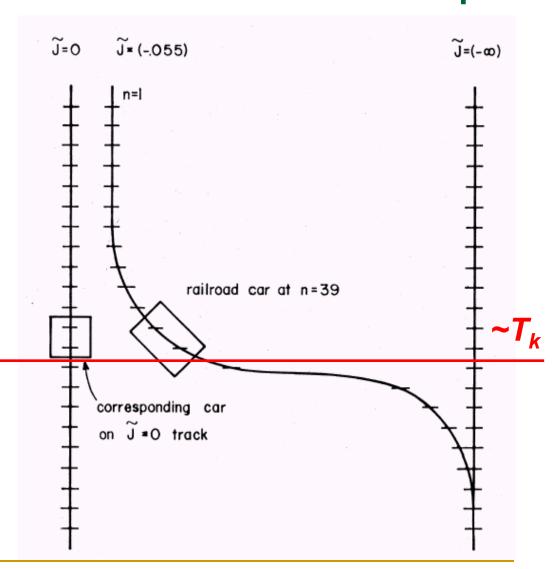
- Iterative numerical solution.
- Renormalize by $\Lambda^{1/2}$.
- Keep low energy states.

$$\frac{J}{\sqrt{1-\gamma_2}} \frac{\gamma_1}{\gamma_2} \frac{\gamma_3}{\gamma_3} \dots$$

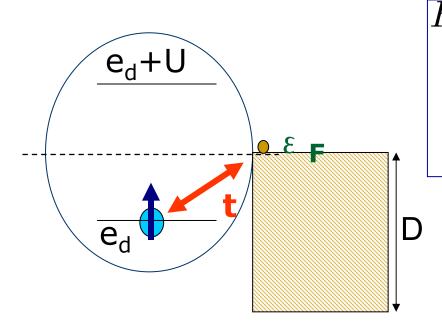
Numerical Renormalization Group

What can you do?

- Describe the physics at different energy scales for arbitrary *J*.
- Probe the parameter phase diagram.
- Crossing between the "free" and "screened" magnetic moment regimes.
- Energy scale of the transition is of order
 T_k



Anderson Model



- e_d: energy level
- U: Coulomb repulsion
- e_F: Fermi energy in the metal
- t: Hybridization
- D: bandwidth

$$\begin{array}{ll} H & = & \epsilon_d \hat{n}_{d\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \\ & + \sum_k \epsilon_k \hat{n}_{k\sigma} \\ & + t \sum_k c_{d\sigma}^\dagger c_{k\sigma} + \mathrm{h.c.} \\ \\ \mathrm{with} & & \\ \hat{n}_{d\sigma} & = & c_{k\sigma}^\dagger c_{k\sigma} \\ & & \\ \hat{n}_{k\sigma} & = & c_{k\sigma}^\dagger c_{k\sigma} \end{array}$$

- "Quantum dot language"
- e_d: position of the level (V_g)
- U: Charging energy
- e_F: Fermi energy in the leads
- t: dot-lead tunneling
- D: bandwidth

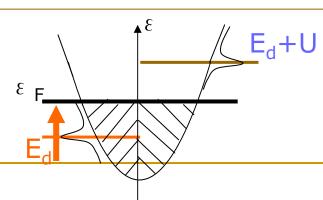
Schrieffer- Wolff Transformation

Anderson Model

Existence of localized moment $|V_{id}| << U$

Schrieffer-Wolff transformation

s-d Model



Schrieffer- Wolff Transformation

From: Anderson Model (single occupation)

$$H = \epsilon_d \hat{n}_{d\sigma} + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow}$$

$$+ \sum_k \epsilon_k \hat{n}_{k\sigma} \qquad \text{with}$$

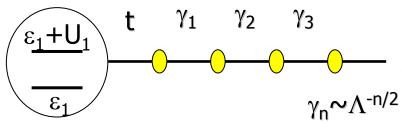
$$+ t \sum_k c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.}$$

$$\hat{n}_{d\sigma} = c_{d\sigma}^{\dagger} c_{d\sigma}
\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger} c_{k\sigma}$$

To: s-d (Kondo) Model

$$H_{\text{S-d}} = J \sum_{kk'} S^{+} c_{k\downarrow}^{\dagger} c_{k'\uparrow} + S^{-} c_{k\uparrow}^{\dagger} c_{k'\downarrow}$$
$$+ S_{z} \left(c_{k\downarrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right)$$
$$+ \sum_{k} \epsilon_{k} \hat{n}_{k\sigma}$$

NRG on Anderson model: LDOS



- Single-particle peaks at ε_d and ε_d +U.
- Many-body peak at the Fermi energy: Kondo resonance (width ~T_K).
- NRG: good resolution at low ω (log discretization).

