
Lectures: Condensed Matter II
1 – Quantum dots
2 – Kondo effect: Intro/theory.
3 – Kondo effect in nanostructures

Luis Dias – UT/ORNL 
Basic references for today’s lecture:
A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Press, 1993.
R. Bulla, T. Costi, Prushcke, Rev. Mod. Phys (in press) arXiv 0701105.
K.G. Wilson, Rev. Mod. Phys. 47 773 (1975).



Lecture 2: Outline

Kondo effect: Intro.
Kondo’s original idea: Perturbation theory.
Numerical Renormalization Group (NRG).
s-d and Anderson models.
NRG results for the local density of states.



“More is Different”
“ The behavior of large and complex 
aggregates of elementary particles, it turns 
out, is not to be understood in terms of simple 
extrapolation of the properties of a few 
particles. 

Instead, at each level of complexity entirely 
new properties appear and the understanding 
of the new behaviors requires research which 
I think is as fundamental in its nature as any 
other.“

Phillip W. Anderson, “More is Different”, 
Science 177 393 (1972)



From atoms to metals, plus atoms…

Many Atoms!

Metal (non magnetic)

Conduction band

filled

EF

E

ATOM

E

Magnetic “impurities”
(e.g., transition atoms,
with unfilled d-levels, 
f-levels (REarths…))

(few)

Is the resulting compound still a metal ?



Kondo effect
Magnetic impurity in a 
metal.

30’s - Resisivity 
measurements: 
minimum in ρ(T); 
Tmin depends on cimp.
60’s - Correlation 
between the existence of 
a Curie-Weiss 
component in the 
susceptibility (magnetic 
moment) and resistance 
minimum . 

µFe/µB

Top: A.M. Clogston et al Phys. Rev. 125 541(1962).
Bottom: M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).
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Kondo problem: s-d Hamiltonian
Kondo problem: s-wave coupling with spin 
impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)



Kondo’s explanation for Tmin (1964)

Many-body effect: virtual bound 
state near the Fermi energy.
AFM coupling (J>0)→ “spin-flip” 
scattering
Kondo problem: s-wave coupling 
with spin impurity (s-d model):
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Kondo’s explanation for Tmin (1964)
Perturbation theory in J3:

Kondo calculated the 
conductivity in the linear 
response regime
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Only one free paramenter: 
the Kondo temperature TK

Temperature at which the 
perturbative expansion 
diverges. 01 2~ J

B Kk T De ρ−



Kondo’s explanation for Tmin (1964)

( ) 5
tot imp imp log Bk TR T aT c R

D
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Theory diverges logarithmically for T→0 or D→∞. 
(T<TK → perturbation expasion no longer holds)
Experiments show finite R as T→0 or D→∞. 

What is 
going on? {
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ρ(ε)
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Kondo Lattice models

Kondo impurity model 
suitable for diluted impurities 
in metals.
Some rare-earth compounds 
(localized 4f or 5f shells) can 
be described as “Kondo 
lattices”.
This includes so called 
“heavy fermion” materials 
(e.g. Cerium and Uranium-
based compounds 
CeCu2Si2, UBe13).

“Concentrated” case: Kondo Lattice (e.g., some heavy-Fermion materials)



A little bit of Kondo history:

Early ‘30s : Resistance minimum in some metals 
Early ‘50s : theoretical work on impurities in metals 
“Virtual Bound States” (Friedel)
1961: Anderson model for magnetic impurities in 
metals 
1964: s-d model and Kondo solution (PT)
1970: Anderson “Poor’s man scaling”
1974-75: Wilson’s Numerical Renormalization Group 
(non PT)
1980 : Andrei and Wiegmann’s exact solution



A little bit of Kondo history:

Early ‘30s : Resistance minimum in some metals
Early ‘50s : theoretical work on impurities in metals 
“Virtual Bound States” (Friedel)
1961: Anderson model for magnetic impurities in 
metals 
1964: s-d model and Kondo solution (PT)
1970: Anderson “Poor’s man scaling”
19741974--75: Wilson75: Wilson’’s Numerical Renormalization Group s Numerical Renormalization Group 
(non PT)(non PT)
1980 : Andrei and Wiegmann’s exact solution

Kenneth G. Wilson – Physics Nobel Prize in 1982
"for his theory for critical phenomena in connection
with phase transitions"



Kondo’s explanation for Tmin (1964)
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Diverges logarithmically for T→0 or D→∞.
(T<TK → perturbation expasion no longer holds)

Experiments show finite R as T→0 or D→∞. 
The log comes from something like:

What is 
going on? {
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ρ(ε)

ε
εFAll energy scales contribute! 



“Perturbative” Discretization of CB

∆ = (∆E)/Dε = (E-EF)/D

∆



“Perturbative” Discretization of CB

A7 > A6 > A5 > A4 > A3 > A2 > A1

Want to keep all
contributions
for D→∞?

Not a good 
approach!
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Wilson’s CB Logarithmic Discretization

∆n=Λ-n (Λ=2)

ε = (E-EF)/D



Wilson’s CB Logarithmic Discretization

(Λ=2)

log const.nA = Λ=

∆n=Λ-n
-n

cut-off

maxno n
ε = Λ

A3 =     A2 = A1 Now you’re ok!



Kondo problem: s-d Hamiltonian
Kondo problem: s-wave coupling with spin 
impurity (s-d model):

Metal (non magnetic, s-band)

Conduction band

filled

EF

E

Magnetic impurity (unfilled d-level)

ρ(ε)



Kondo s-d Hamiltonian

From continuum k to a discretized band.
Transform Hs-d into a linear chain form (exact, as long 
as the chain is infinite):

ρ(ε)
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“New” Hamiltonian (Wilson’s RG method)

Logarithmic CB discretization is the key to 
avoid divergences!
Map: conduction band → Linear Chain

Lanczos algorithm.
Site n → new energy scale:
DΛ-(n+1)<| εk- εF |< DΛ-n

Iterative numerical solution 
JJ γγ11

...
γγ22 γγ33

γγnn~~ΛΛ--n/2n/2

ρ(ε)



Logarithmic Discretization.
Steps:
1. Slice the conduction 

band in intervals in a 
log scale (parameter 
Λ)

2. Continuum spectrum 
approximated by a 
single state

3. Mapping into a tight 
binding chain: sites 
correspond to different 
energy scales. ttnn~~ΛΛ--n/2n/2



Wilson’s CB Logarithmic Discretization

• Logarithmic Discretization (in space):

Λ>1

ρ(ε)



“New” Hamiltonian (Wilson)

Recurrence relation (Renormalization procedure).

JJ γγ11
...

γγ22 γγ33

γγnn~~ΛΛ--n/2n/2

ρ(ε)



“New” Hamiltonian (Wilson)
Suppose you diagonalize HN getting Ek
and |k> and you want to diagonalize HN+1
using this basis.
First, you expand your basis:

Then you calculate <k,a|f+N|k’,a’>, 
<k,a|fN|k’,a’>and you have the matrix 
elements for HN+1 (sounds easy, right?)
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↓
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k



Intrinsic Difficulty
You ran into problems when N~5. The basis is too 
large! (grows as 2(2N+1))

N=0; (just the impurity); 2 states (up and down)
N=1; 8 states
N=2; 32 states
N=5; 2048 states
(…) N=20; 2.199x1012 states: 

1 byte per state → 20 HDs just to store the basis.
And we might go up to N=180; 1.88x10109 states. 

Can we store this basis? 
(Hint: The number of atoms in the universe is ~ 1080)

Cut-off the basis → lowest ~1500 or so in the next 
round (Even then, you end up having to diagonalize
a 4000x4000 matrix… ).

0

↑

↓

↑ ↓
...



Renormalization Procedure

JJ γγ11 ...
γγ22 γγ33

γγnn~~ ξ ξn n ΛΛ--n/2n/2

Iterative numerical 
solution.
Renormalize by Λ1/2.

Keep low energy 
states.

...

HHNN

ξξNN

HHN+1N+1



Renormalization Group Transformation

Fixed point H*: indicates 
scale invariance.

Renormalization Group 
transformation: (Re-
scale energy by Λ1/2).

...

HHNN

ξξNN

HHN+1N+1

Fixed points



Numerical Renormalization Group
What can you do? 

Describe the physics 
at different energy 
scales for arbitrary J.
Probe the parameter 
phase diagram.
Crossing between the 
“free” and “screened” 
magnetic moment 
regimes.
Energy scale of the 
transition is of order 
Tk

~Tk


