Lectures: Condensed Matter II

m 2 — Kondo effect: Intro/theory.
3 — Kondo effect in nanostructures

Luis Dias — UT/ORNL

Basic references for today’s lecture:

A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Press, 1993.
R. Bulla, T. Costi, Prushcke, Rev. Mod. Phys (in press) arXiv 0701105.

K.G. Wilson, Rev. Mod. Phys. 47 773 (1975).



Lecture 2: Outline

Kondo effect: Intro.

Kondo's original idea: Perturbation theory.
Numerical Renormalization Group (NRG).
s-d and Anderson models.

NRG results for the local density of states.



“More is Different”

“ The behavior of large and complex
aggregates of elementary particles, it turns
out, is not to be understood in terms of simple
extrapolation of the properties of a few
particles.

Instead, at each level of complexity entirely
new properties appear and the understanding
of the new behaviors requires research which
| think is as fundamental in its nature as any
other.”

Phillip W. Anderson, “More is Different”,
Science 177 393 (1972)
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(e.g., transition atoms,
with unfilled d-levels,

f-levels (REarths...))

Is the resulting compound still a metal ?
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Top: A.M. Clogston et al Phys. Rev. 125 541(1962).
Bottom: M.P. Sarachik et al Phys. Rev. 135 A1041 (1964).




Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin
impurity (s-d model):
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Conduction band /

Metal (non magnetic, s-band)

Magnetic impurity (unfilled d-level)




‘ Kondo's explanation for T .. (1964)

—JZS+ C1Cx T+S CkTCki

Spin: J>0 AFM
T
T S ( CirCrr ™ Ckicki)

+ Zek Ckacka

Metal: Free waves

= Many-body effect: virtual bound
state near the Fermi energy.

= AFM coupling (J>0)— “spin-flip”
scattering .

= Kondo problem: s-wave coupling Metal DOS
with spin impurity (s-d model):




Kondo's explanation for T .. (1964)

Perturbation theory in J°: R oc J? {1—4],00 log(kBT }

o Kondo calculated the # D
conductivity in the linear . kT
response regime R, (T ) =al” —c, R, log( Z j

1/5
T min — RimpD Clll’ils
A Sak, P
.»'"\ 5. |
\ \ ﬁ / Only one free paramenter:
I . the Kondo temperature T,

o Temperature at which the
perturbative expansion
diverges.| T ~ De /*/r




'Kondo’s explanation for T .. (1964)

Ry (T)

—al’-c. R

imp~ "imp

log(

kT
D

)

What is
going on?

o Experiments show
p(e)

A

o Theory diverges logarithmically for T—0 or D—oo.
(T<Tx — perturbation expasion no longer holds)

finite R as T—0 or D—wm.
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Kondo Lattice models

“Concentrated” case: Kondo Lattice (e.g., some heavy-Fermion materials)

Kondo impurity model
suitable for diluted impurities
In metals.

Some rare-earth compounds
(localized 4f or 5f shells) can
be described as “Kondo
lattices”.

This includes so called
“heavy fermion” materials
(e.g. Cerium and Uranium-
based compounds

CeCu,Si,, UBe,;).



A little bit of Kondo history:

Early ‘30s : Resistance minimum in some metals

Early ‘50s : theoretical work on impurities in metals
“Virtual Bound States” (Friedel)

1961: Anderson model for magnetic impurities in
metals

- 1964: s-d model and Kondo solution (PT)
1970: Anderson “Poor’'s man scaling”

1974-75: Wilson’s Numerical Renormalization Group
(non PT)

1980 : Andrei and Wiegmann’'s exact solution




A little bit of Kondo history:

Kenneth G. Wilson — Physics Nobel Prize in 1982
"for his theory for critical phenomena in connection
with phase transitions”

1

1974-75: Wilson's Numerical Renormalization Group
(non PT)




Kondo's explanation for T .. (1964)

R (T)=al’-c, R, log(kBT j
D
o Diverges logarithmically for T—0 or D—oo.
What is (T<T, — perturbation expasion no longer holds)
going on? § | Experiments show finite R as T—>0 or D—sx.
o The log comes from something like:

p(e) 1
de (k o1 j
— =—log
& D

ks T/ D

D D

o All energy scales contribute!



“Perturbative” Discretization of CB
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A = (AE)ID

Want to keep all
contributions

for D—>00?

Not a good
approach!

“Perturbative” Discretization of CB
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Wilson’s CB Logarithmic Discretization
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Wilson’s CB Logarithmic Discretization
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Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin

impurity (s-d model):

HK = 2: Eksﬁks + J Z CLS (S . 5)88, Ck’s’
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. /
filled / I I

Metal (non magnetic, s-band)

Magnetic impurity (unfilled d-level)




Kondo s-d Hamiltonian

From continuum k to a discretized band.

Transform H_ 4into a linear chain form (exact, as long

as the chain is infinite):
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‘New” Hamiltonian (Wilson’s RG method)

Logarithmic CB discretization is the key to
avoid divergences!

Map: conduction band — Linear Cha‘i‘n

o Lanczos algorithm. o(¢)
0 Site n — new energy scale:
_(n+1) n AR AR A
o DA ™| g - e [< DA - €/D
0 Iterative numerical solution -+ 0 |
J Y"1 Y2 13

N N N
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Logarithmic Discretization.
Steps:

_ _ b) A Alm)
Slice the conduction
band in intervals in a
log scale (parameter
A) -i1 I ‘-x__I *..I"* | .*I.-’ y I,f i -
Continuum spectrum “l ,L ,
approximated by a N
single state O
Mapping into a tight C) . . . §
binding chain: sites OTG’ : 0 . Ot—C)

correspond to different
energy scales. t ~AT/2



Wilson’s CB Logarithmic Discretization

» Logarithmic Discretization (in space):

A>1

Impurity

- €/D

FIG. 4. Spherical shells in r space depicting the extents of
the wave functions of f,. Within their shells, every wave
function has oscillations so that they are mutually orthogo-

nal. Alternately one can show that, in thelwave-vecmr space,
U i~




‘New” Hamiltonian (Wilson)

Recurrence relation (Renormalization procedure).
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‘New” Hamiltonian (Wilson)

Suppose you diagonalize H,, getting E,
and |k> and you want to diagonalize H,,,
using this basis.

First, you expand your basis: ¢>
Q5 k) = |&), ‘k> )
7; k) = faratlB), | ir ________________ i T¢>
—45 B) = faprit|B), oo o+ -
3 “%’ k) = fxprat a1t &), S '

Then you calculate <k,a|f"\|k',a™>,
<k,alfy|k',a’>and you have the matrix
elements for Hy. (sounds easy, right?)




Intrinsic Difficulty

You ran into problems when N~5. The basis is too

large! (grows as 2(2N+1)) 0)

o N=0; (just the impurity); 2 states (up and down) T

o N=1; 8 states L)

o N=2; 32 states T i 1)
o N=5; 2048 states :. PPN Saea
o (...) N=20; 2.199x10'2 states: - T

_________________

1 byte per state — 20 HDs just to store the basis.
o And we might go up to N=180; 1.88x10'%9 states.
Can we store this basis?
(Hint: The number of atoms in the universe is ~ 108°)

Cut-off the basis — lowest ~1500 or so in the next
round (Even then, you end up having to diagonalize
a 4000x4000 matrix. . ).



Renormalization Procedure

Hyi1 = VAHN + &N Z f]J(f_|_1nga -+ f]trafNHa
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Renormalization Group Transformation

Hyi1=VAHN + &N Z:f]];[_|_1gf]\fa + fjJ(fafNHa

= Renormalization Group

transformation: (Re- 2,41,

scale energy by A'2). n,+n)

n, |

Hyyq = R(HN)\ Z nf
LU_ 2]’11

= Fixed point H*: indicates
scale invariance.

H* = R?(H*) s

Fixed points




Numerical Renormalization Group

What can you do?

Describe the physics
at different energy
scales for arbitrary J.

Probe the parameter
phase diagram.

Crossing between the
“free” and “screened”

J=0

L 1 b1 1 1 11
T

J= (-055)

n=|

railroad car at n=39

J=(-o)

magnetic moment
regimes.

Energy scale of the
transition is of order
Tk
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corresponding car
on J =0 track




