Lectures: Condensed Matter II 1 – Quantum dots 2 – Kondo effect: Intro/theory. 3 – Kondo effect in nanostructures

Luis Dias – UT/ORNL

Basic references for today's lecture:

A.C. Hewson, *The Kondo Problem to Heavy Fermions*, Cambridge Press, 1993. R. Bulla, T. Costi, Prushcke, *Rev. Mod. Phys* (in press) arXiv 0701105. K.G. Wilson, *Rev. Mod. Phys.* **47** 773 (1975).

Lecture 2: Outline

- Kondo effect: Intro.
- Kondo's original idea: Perturbation theory.
- Numerical Renormalization Group (NRG).
- s-d and Anderson models.
- NRG results for the local density of states.

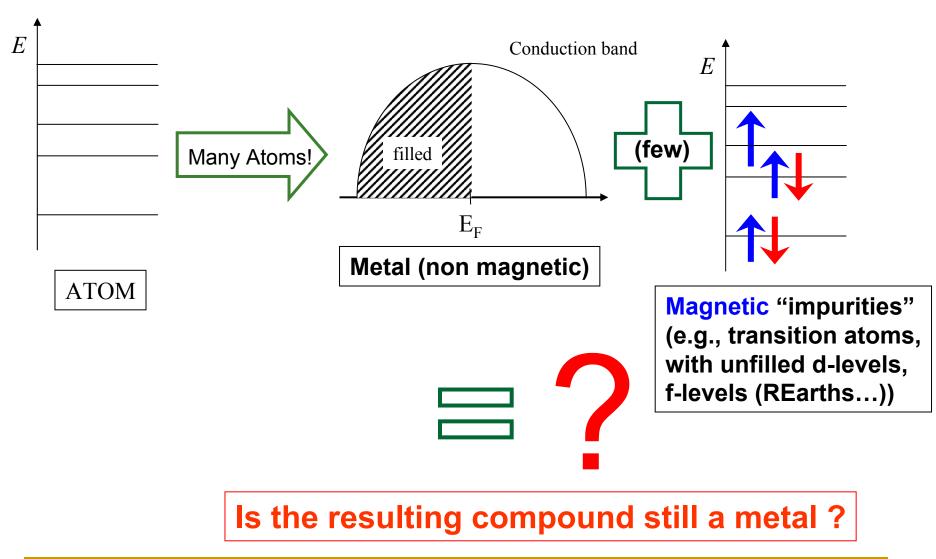
"More is Different"

"The behavior of large and complex aggregates of elementary particles, it turns out, is not to be understood in terms of simple extrapolation of the properties of a few particles.

Instead, at each level of complexity entirely new properties appear and the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other."

> Phillip W. Anderson, "More is Different", Science **177** 393 (1972)

From atoms to metals, plus atoms...

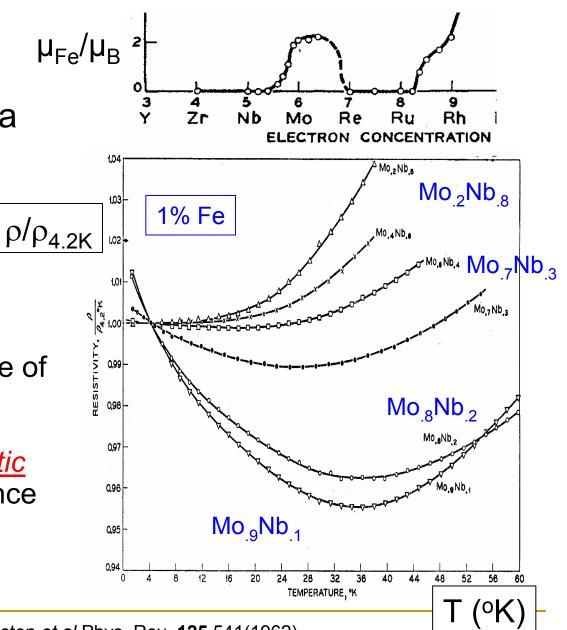


Kondo effect

- Magnetic impurity in a metal.
 - 30's Resisivity measurements: minimum in ρ(T);

 T_{min} depends on $c_{imp.}$

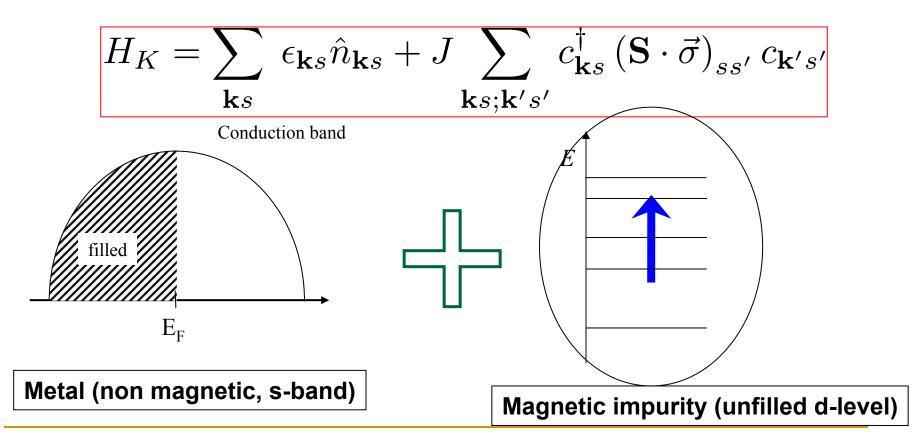
 60's - Correlation between the existence of a Curie-Weiss component in the susceptibility (<u>magnetic</u> <u>moment</u>) and resistance minimum.



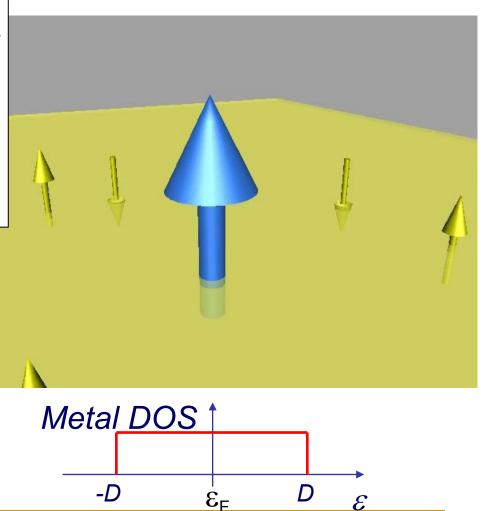
Top: A.M. Clogston *et al* Phys. Rev. **125** 541(1962). Bottom: M.P. Sarachik *et al* Phys. Rev. **135** A1041 (1964).

Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin impurity (s-d model):

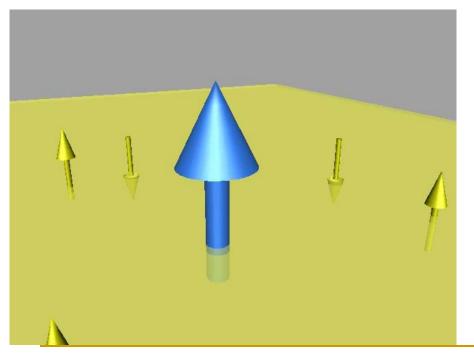


- <u>Many-body</u> effect: virtual bound state near the <u>Fermi energy</u>.
- AFM coupling (J>0)→ "spin-flip" scattering
- Kondo problem: s-wave coupling with spin impurity (s-d model):



Perturbation theory in J^3 :

 Kondo calculated the conductivity in the linear response regime

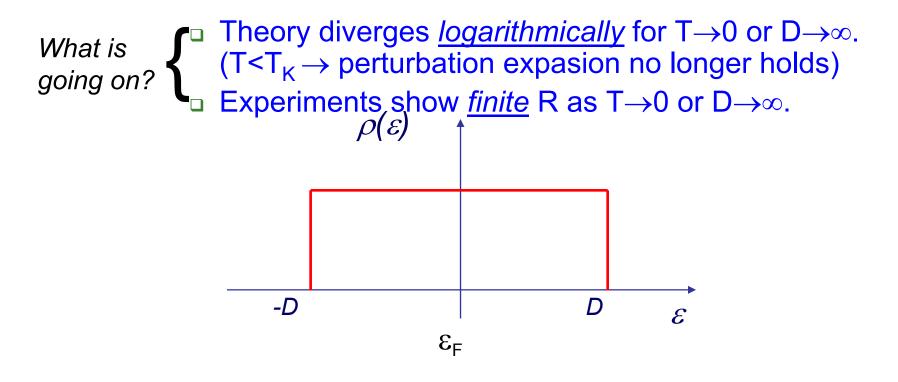


$$R_{\rm imp}^{\rm spin} \propto J^2 \left[1 - 4J\rho_0 \log\left(\frac{k_B T}{D}\right) \right]$$
$$R_{\rm tot} \left(T\right) = aT^5 - c_{\rm imp}R_{\rm imp} \log\left(\frac{k_B T}{D}\right)$$

$$T_{\min} = \left(\frac{R_{\min}D}{5ak_B}\right)^{1/5} c_{\min}^{1/5}$$

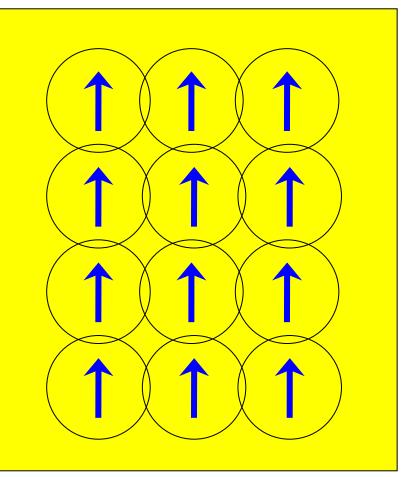
- Only <u>one</u> free paramenter: the Kondo temperature T_K
 - □ Temperature at which the perturbative expansion diverges. $k_B T_K \sim D e^{-1/2J\rho_0}$

$$R_{\text{tot}}(T) = aT^5 - c_{\text{imp}}R_{\text{imp}}\log\left(\frac{k_B T}{D}\right)$$



Kondo Lattice models

"Concentrated" case: Kondo Lattice (e.g., some heavy-Fermion materials)



- Kondo impurity model suitable for diluted impurities in metals.
- Some rare-earth compounds (localized 4f or 5f shells) can be described as "Kondo lattices".
- This includes so called "heavy fermion" materials (e.g. Cerium and Uraniumbased compounds CeCu₂Si₂, UBe₁₃).

A little bit of Kondo history:

- Early '30s : Resistance minimum in some metals
- Early '50s : theoretical work on impurities in metals "Virtual Bound States" (Friedel)
- 1961: Anderson model for magnetic impurities in metals
 - 1964: s-d model and Kondo solution (PT)
- 1970: Anderson "Poor's man scaling"
- 1974-75: Wilson's Numerical Renormalization Group (non PT)
- 1980 : Andrei and Wiegmann's exact solution

A little bit of Kondo history:

Early '30s : Resista

Early '50s : theoreti

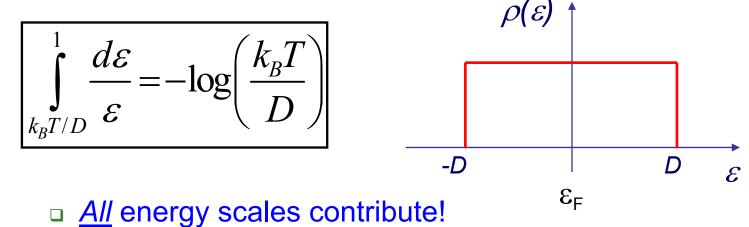
 1961: An Kenneth G. Wilson – Physics Nobel Prize in 1982
 "for his theory for critical phenomena in connection" with phase transitions"

1964: s-d model and Kond solution (PT) 1970: Anderson "Poor's man scaling"

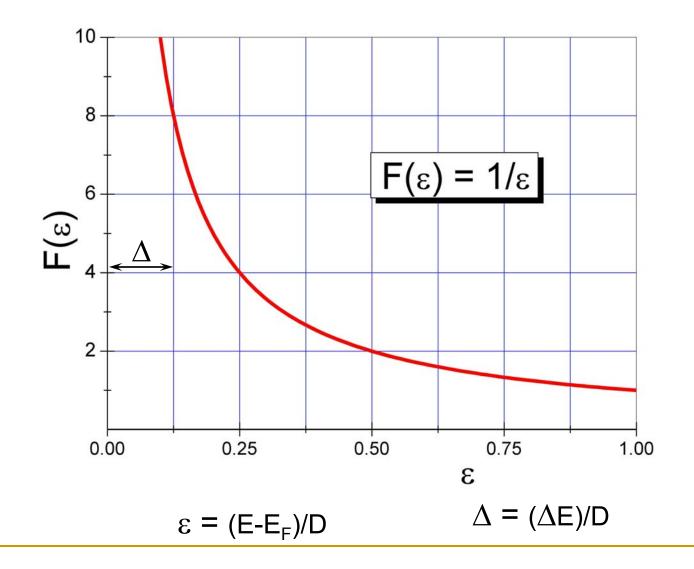
1974-75: Wilson's Numerical Renormalization Group (non PT)

$$R_{\rm tot}(T) = aT^5 - c_{\rm imp}R_{\rm imp}\log\left(\frac{k_BT}{D}\right)$$

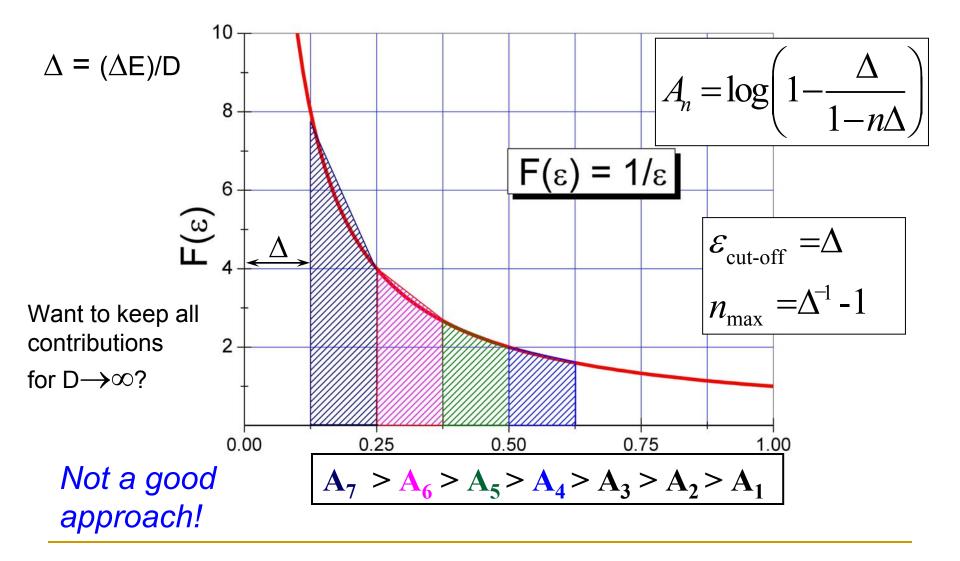
Diverges <u>logarithmically</u> for $T \rightarrow 0$ or $D \rightarrow \infty$. What is going on? $\begin{cases} (T < T_K \rightarrow \text{perturbation expassion no longer holds}) \\ \square \text{ Experiments show } \underline{finite} \ R \text{ as } T \rightarrow 0 \text{ or } D \rightarrow \infty. \end{cases}$ The log comes from something like:



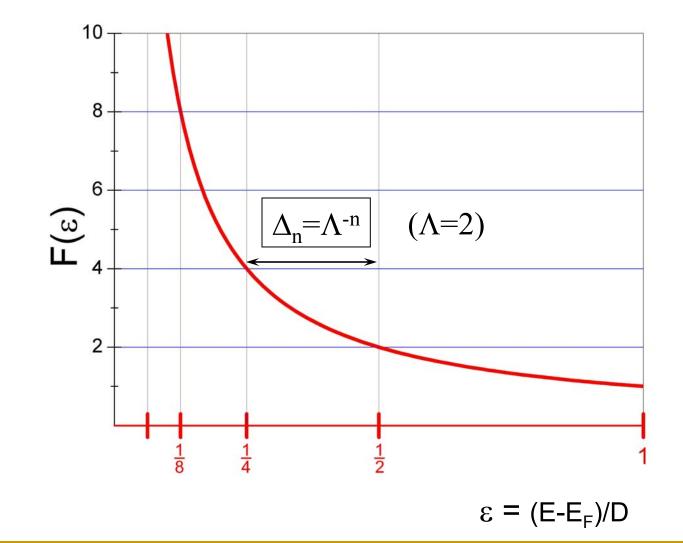
"Perturbative" Discretization of CB



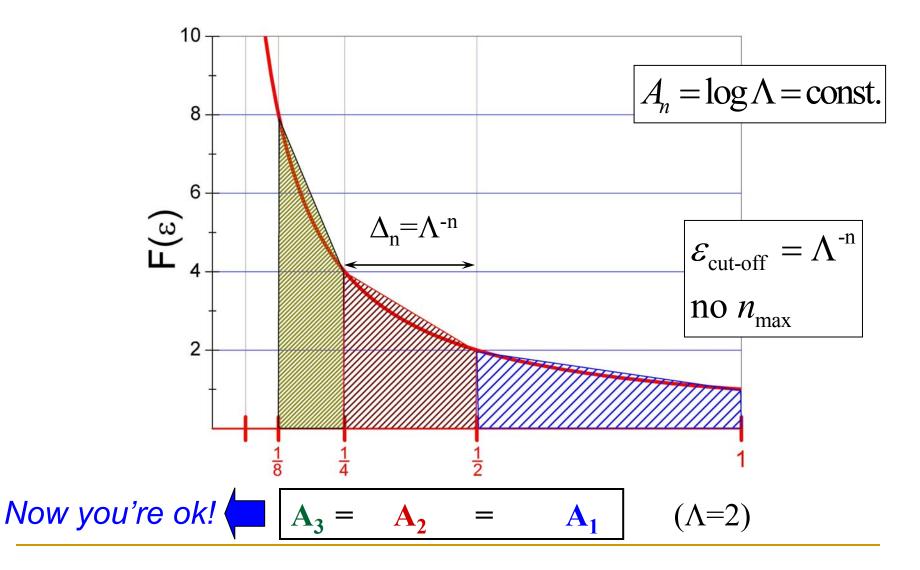
"Perturbative" Discretization of CB



Wilson's CB Logarithmic Discretization

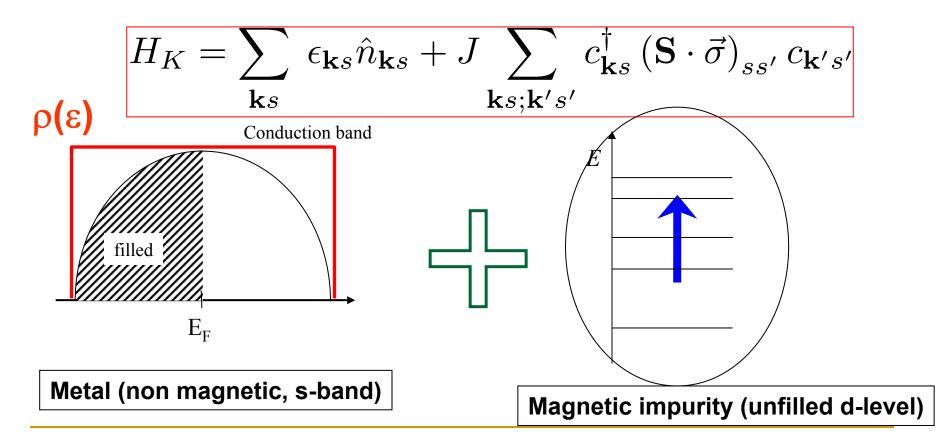


Wilson's CB Logarithmic Discretization



Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin impurity (s-d model):



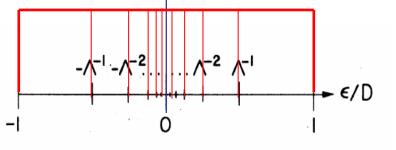
Kondo s-d Hamiltonian

- From continuum *k* to a *discretized* band.
- Transform H_{s-d} into a linear chain form (exact, as long as the chain is infinite):

$$H_{K} = \sum_{n=0}^{\infty} \epsilon_{n} (f_{n}^{+} f_{n+1} + f_{n+1}^{+} f_{n}) - 2J f_{0}^{+} \sigma f_{0} \cdot \tau,$$

"New" Hamiltonian (Wilson's RG method)

- Logarithmic CB discretization is the key to avoid divergences!
- Map: conduction band \rightarrow Linear Chain
 - Lanczos algorithm.
 - □ Site $n \rightarrow$ new energy scale:
 - $\Box \quad D\Lambda^{-(n+1)} \le \varepsilon_{k} \varepsilon_{F} \le D\Lambda^{-n}$
 - Iterative numerical solution



 γ_3

 $\rho(\varepsilon)$

 γ_2

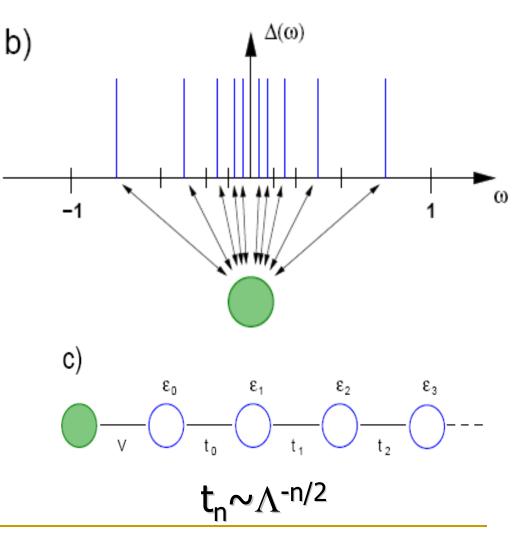
 $\gamma_n \sim \Lambda^{-n/2}$

 γ_1

Logarithmic Discretization.

Steps:

- Slice the conduction band in intervals in a log scale (parameter Λ)
- Continuum spectrum approximated by a single state
- Mapping into a tight binding chain: sites correspond to different energy scales.



Wilson's CB Logarithmic Discretization

• Logarithmic Discretization (in space):

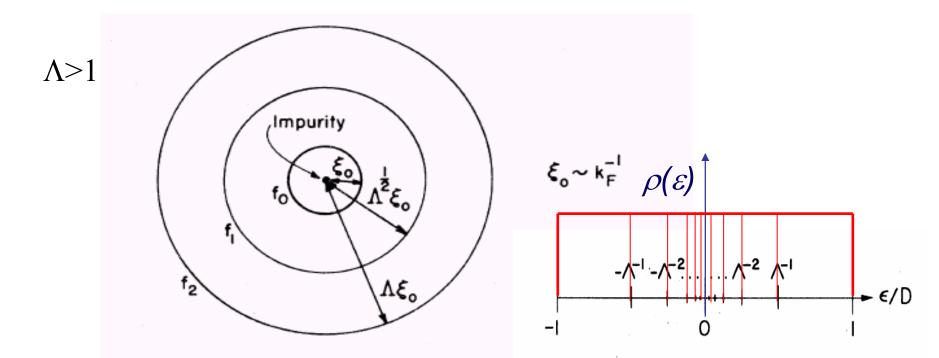
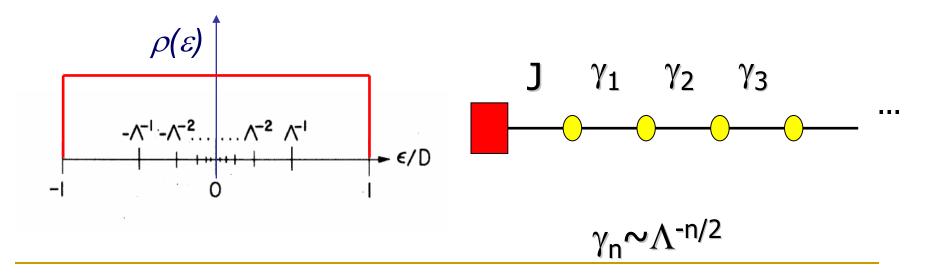


FIG. 4. Spherical shells in r space depicting the extents of the wave functions of f_n . Within their shells, every wave function has oscillations so that they are mutually orthogonal. Alternately one can show that, in the wave-vector space,

"New" Hamiltonian (Wilson)

Recurrence relation (Renormalization procedure).

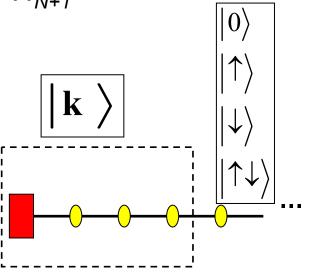
$$H_{N+1} = \sqrt{\Lambda}H_N + \xi_N \sum_{\sigma} f_{N+1\sigma}^{\dagger} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$



"New" Hamiltonian (Wilson)

- Suppose you diagonalize H_N getting E_k and |k> and you want to diagonalize H_{N+1} using this basis.
- First, you expand your basis:

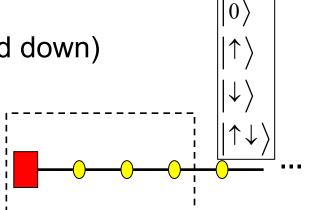
 $\begin{aligned} |\Omega; k\rangle &= |k\rangle, \\ |\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + |k\rangle, \\ |-\frac{1}{2}; k\rangle &= f_{N+1,-\frac{1}{2}} + |k\rangle, \\ |\frac{1}{2}, -\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + f_{N+1,-\frac{1}{2}} + |k\rangle. \end{aligned}$



Then you calculate <*k*,a|*f*⁺_N|*k*',a'>, <*k*,a|*f*_N|*k*',a'>and you have the matrix elements for H_{N+1} (sounds easy, right?)

Intrinsic Difficulty

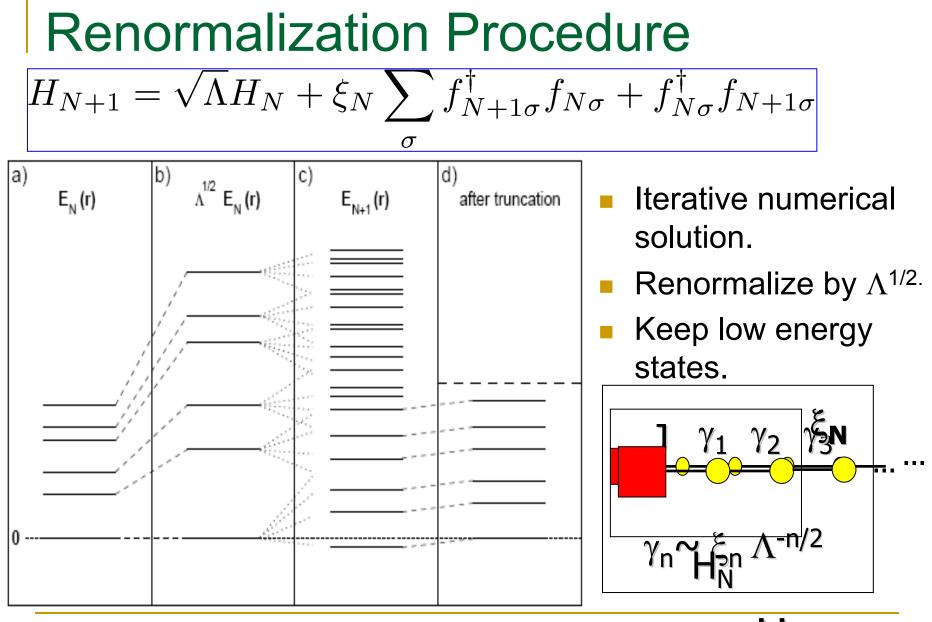
- You ran into problems when N~5. The basis is too large! (grows as 2^(2N+1))
 - N=0; (just the impurity); 2 states (up and down)
 - N=1; 8 states
 - N=2; 32 states
 - N=5; 2048 states
 - □ (...) N=20; 2.199x10¹² states:



- 1 byte per state \rightarrow 20 HDs just to store the basis.
- And we might go up to N=180; 1.88×10^{109} states.
 - Can we store this basis?

(Hint: The number of atoms in the universe is $\sim 10^{80}$)

 Cut-off the basis → lowest ~1500 or so in the next round (Even then, you end up having to diagonalize a 4000x4000 matrix...).



 H_{N+1}

Renormalization Group Transformation

$$H_{N+1} = \sqrt{\Lambda}H_N + \xi_N \sum_{\sigma} f_{N+1\sigma}^{\dagger} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$
• Renormalization Group
transformation: (Re-
scale energy by $\Lambda^{1/2}$).

$$H_{N+1} = R(H_N)$$
• Fixed point H*: indicates
scale invariance.

$$H^* = R^2(H^*)$$

$$\int_{U_{n+1}}^{U_{n+1}} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$

Numerical Renormalization Group

What can you do?

- Describe the physics at different energy scales for arbitrary *J*.
- Probe the parameter phase diagram.
- Crossing between the "free" and "screened" magnetic moment
 regimes.
- Energy scale of the transition is of order

