Lectures: Condensed Matter II

- 1 Quantum dots
- 2 Kondo effect: Intro/theory.
- 3 Kondo effect in nanostructures

Luis Dias – UT/ORNL

Lectures: Condensed Matter II

- 1 Quantum dots
- 2 Kondo effect: Intro/theory.

3 – Kondo effect in nanostructures

Luis Dias – UT/ORNL

Lecture 3: Outline

- Quantum Dots: brief review.
- Kondo effect: Review.
- Kondo effect in quantum dots.
- Kondo effect in Single Molecule Transistors.
- Kondo effect in Surfaces (STM, "quantum mirage").
- Kondo effect in carbon nanotubes.

What are Quantum Dots?

Semiconductor Quantum Dots:

 Devices in which electrons are confined in nanometer size volumes.

Sometimes referred to as "artificial atoms".

•"Quantum dot" is a generic label: lithographic QDs, selfassembled QDs, colloidal QDs have different properties.

Lithographic Quantum Dots

How to do it in practice? (a question for the experimentalists...)

GaAs GaAs GaAs GaAs Al_xGa_{1-x}As

Ingredients:

from Charlie Marcus' Lab website (marcuslab.harvard.edu)

Growth of heterostructures to obtain the 2DEG

•(good quality, large mean free-paths)

- Metallic electrodes electrostatically deplete charge: confinement
- Sets of electrodes to apply bias etc.
- LOW TEMPERATURE! (~100 mK)

Coulomb Blockade in Quantum Dots

Coulomb Blockade in Quantum Dots

"Coulomb Diamonds" (Stability Diagram)

L. P. Kouwenhoven et al. Science 278 1788 (1996).

Kondo's explanation for T_{min} (1964)

Perturbation theory in J^3 :

 Kondo calculated the conductivity in the linear response regime

$$R_{\rm imp}^{\rm spin} \propto J^2 \left[1 - 4J\rho_0 \log\left(\frac{k_B T}{D}\right) \right]$$
$$R_{\rm tot} \left(T\right) = aT^5 - c_{\rm imp}R_{\rm imp} \log\left(\frac{k_B T}{D}\right)$$

$$T_{\min} = \left(\frac{R_{\min}D}{5ak_B}\right)^{1/5} c_{\min}^{1/5}$$

- Only <u>one</u> free paramenter: the Kondo temperature T_K
 - □ Temperature at which the perturbative expansion diverges. $k_B T_K \sim D e^{-1/2J\rho_0}$

A little bit of Kondo history:

- Early '30s : Resistance minimum in some metals
- Early '50s : theoretical work on impurities in metals "Virtual Bound States" (Friedel)
- 1961: Anderson model for magnetic impurities in metals
 - 1964: s-d model and Kondo solution (PT)
- 1970: Anderson "Poor's man scaling"
- 1974-75: Wilson's Numerical Renormalization Group (non PT)
- 1980 : Andrei and Wiegmann's exact solution

A little bit of Kondo history:

Early '30s : Resista

Early '50s : theoreti

 1961: An Kenneth G. Wilson – Physics Nobel Prize in 1982
 "for his theory for critical phenomena in connection with phase transitions"

1964: s-d model and Kond solution (PT) 1970: Anderson "Poor's man scaling"

1974-75: Wilson's Numerical Renormalization Group (non PT)

 H_{N+1}

Renormalization Group Transformation

$$H_{N+1} = \sqrt{\Lambda}H_N + \xi_N \sum_{\sigma} f_{N+1\sigma}^{\dagger} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$
• Renormalization Group
transformation: (Re-
scale energy by $\Lambda^{1/2}$).
$$H_{N+1} = R(H_N)$$
• Fixed point H*: indicates
scale invariance.
$$H^* = R^2(H^*)$$

$$U_{D=10^3}^{\sigma} 0$$

$$U_{D=10^3}^{\sigma} 0$$

$$V_{D=10^3}^{\sigma} 0$$

Numerical Renormalization Group

What can you do?

- Describe the physics at different energy scales for arbitrary *J*.
- Probe the parameter phase diagram.
- Crossing between the "free" and "screened" magnetic moment
 regimes.
- Energy scale of the transition is of order

Anderson Model

- e_d: energy level
- U: Coulomb repulsion
- e_F: Fermi energy in the metal
- t: Hybridization
- D: bandwidth

$$H = \epsilon_{d}\hat{n}_{d\sigma} + U\hat{n}_{d\uparrow}\hat{n}_{d\downarrow} + \sum_{k}\epsilon_{k}\hat{n}_{k\sigma} + t\sum_{k}c_{d\sigma}^{\dagger}c_{k\sigma} + \text{h.c.}$$
with
$$\hat{n}_{d\sigma} = c_{d\sigma}^{\dagger}c_{d\sigma}$$

$$\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger}c_{k\sigma}$$
"Quantum dot language"
$$e_{d}: \text{ position of the level (V_{g})}$$

$$U: \text{ Charging energy}$$

$$e_{F}: \text{ Fermi energy in the leads}$$

$$t: \text{ dot-lead tunneling}$$

$$D: \text{ bandwidth}$$

Schrieffer- Wolff Transformation

Anderson Model

 $\rightarrow |V_{kd}| << U$

Schrieffer-Wolff transformation

Schrieffer- Wolff Transformation

From: Anderson Model (single occupation)

$$H = \epsilon_{d}\hat{n}_{d\sigma} + U\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}$$

$$+ \sum_{k} \epsilon_{k}\hat{n}_{k\sigma}$$

$$+ t\sum_{k} c_{d\sigma}^{\dagger}c_{k\sigma} + \text{h.c.}$$
with
$$\hat{n}_{d\sigma} = c_{d\sigma}^{\dagger}c_{d\sigma}$$

$$\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger}c_{k\sigma}$$

$$\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger}c_{k\sigma}$$

$$\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger}c_{k\sigma}$$

$$\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger}c_{k\sigma}$$

$$J = t^{2}\sum_{k,k'} \left\{ \frac{1}{U + \epsilon_{d} - \epsilon_{k}'} + \frac{1}{\epsilon_{k} - \epsilon_{d}} \right\}$$
To: s-d (Kondo) Model
$$H_{s-d} = J\sum_{kk'} S^{+}c_{k\downarrow}^{\dagger}c_{k'\uparrow} + S^{-}c_{k\uparrow}^{\dagger}c_{k'\downarrow}$$

$$+ S_{z} \left(c_{k\downarrow}^{\dagger}c_{k'\uparrow} - c_{k\downarrow}^{\dagger}c_{k'\downarrow} \right)$$

$$+ \sum_{k} \epsilon_{k}\hat{n}_{k\sigma}$$

NRG on Anderson model: LDOS

(0)^pd²

- Single-particle peaks at ε_d and ε_d+U.
- Many-body peak at the Fermi energy:
 Kondo resonance (width ~T_K).
- NRG: good resolution at low ω (log discretization).

History of Kondo Phenomena

- Observed in the '30s
- Explained in the '60s
- Numerically Calculated in the '70s (NRG)
- Exactly solved in the '80s (Bethe-Ansatz) So, what's new about it?

Kondo correlations observed in many different set ups:

- Transport in quantum dots, quantum wires, etc
- STM measurements of magnetic structures on metallic surfaces (e.g., single atoms, molecules. "Quantum mirage")

History of Kondo Phenomena

- Observed in the '30s
- Explained in the '60s
- Numerically Calculated
- Exactly solved in the '80 So, what's ne

Kondo correlations observed

- Transport in quantum dots,
- STM measurements of magn surfaces (e.g., single atoms,

Kondo Effect in Quantum Dots

Revival of the Kondo effect

Leo Kouwenhoven and Leonid Glazman

Kowenhoven and Glazman Physics World - Jan. 2001.

Coulomb Blockade in Quantum Dots

Coulomb Blockade in Quantum Dots

Y. Alhassid Rev. Mod. Phys. 72 895 (2000).

Kondo effect in Quantum Dots

D. Goldhaber-Gordon et al. Nature 391 156 (1998)

Semiconductor Quantum Dots:

 Allow for systematic and controllable investigations of the Kondo effect.

 QD in N_{odd} Coulomb Blockade valley: realization of the Kondo regime of the Anderson impurity problem.

Kondo Effect in CB-QDs

Kondo Temperature T_k : only scaling parameter (~0.5K, depends on V_a)

Kowenhoven and Glazman Physics World – Jan. 2001.

From: Goldhaber-Gordon et al. Nature 391 156 (1998)

Kondo Effect in Quantum Dots

Basic mechanism of the Kondo effect in Coulomb Blocked quantum dots

Kowenhoven and Glazman *Physics World* – Jan. 2001.

Kondo Effect in Double QDs

"Side dot" configuration

R. Potok et al. Nature 446 167 (2007).

Craig et al., Science 304 565 (2004)

"Parallel" configuration

Chen, Chang, Melloch, PRL 92 176801 (2004)

- Tunability of intradot and interdot parameters (couplings, gate voltage).
- Prospects for experimental probe of many-body phenomena, e.g:
- SU(4) Kondo, RKKY interactions,...
- Non-Fermi liquid physics (2-ch Kondo)
- Quantum phase transitions.

Two-channel Kondo effect.

 Spin 1/2 coupled to two *independent* bands: 2channel Kondo model ("overscreened").

- Non-Fermi-liquid (NFL)
 behavior for J₁=J₂.
- Impurity entropy (NFL): $S_{imp} = k_B \log(\sqrt{2})$ (NRG, Bethe ansatz).
- Recent expts in q-dots.

Kondo effect in Single Molecule Transistors

Yu, Natelson, NanoLett. 4 79 (2004).

- Single molecule transistors: C₆₀ molecules "caught" between electrodes (break junction).
- Zero-bias peak as a function of gate voltage: correct Kondo scaling.
- Correct behavior vs. Bias.
- Τ_K>50Κ .

Transport in molecular junctions.

Kondo effect in Single Molecule Transistors

From Dan Ralph's webpage: http://people.ccmr.cornell.edu/~ralph/

- Similar expts (D. Ralph's group).
- Supression of the Kondo resonance in the presence of a magnetic field (top left, black curve, B=10T) and magnetic leads (top right, parallel [green] and antiparallel [blue] magnetizations).

SMTs: Condutanace measurements

- Zero-bias peak at the conductance: Signature of Kondo correlations.
- Their range
- Peak height decreases with T and peak width increases with T (as expected).

Kondo effect in surfaces (STM images).

- Magnetic (Co, Fe) atoms on metallic *surfaces!* Right ingredients for Kondo.
- In this case, Kondo is marked by a *dip* at zero-bias conductance (dl/dV at V=0).

Manoharan et al., *Nature* **403** 512 (2000).

Summary: Lectures on strongly correlated phenomena in nanostructures.

- Lecture 1: Quantum Dots.
- Lecture 2: Kondo effect/NRG.
- Lecture 3: Kondo effect in nanostructures.
- Nanostructures display an array of strongly correlated phenomena: (Kondo and 2ch Kondo effects (= non-Fermi-liquid behavior), interplay of spin and vibrational effects... quantum phase transitions, SU(4) Kondo effect).
- Opportunity: controlled studies of all these features.

Thanks for your attention.