Lectures: Condensed Matter II

- 1 Electronic Transport in Quantum dots
- 2 Kondo effect: Intro/theory.
- 3 Kondo effect in nanostructures

Luis Dias – UT/ORNL

# Lectures: Condensed Matter II 1 – Electronic Transport in Quantum dots 2 – Kondo effect: Intro/theory.

3 – Kondo effect in nanostructures

Luis Dias – UT/ORNL

Basic references for today's lecture:

<u>A.C. Hewson</u>, *The Kondo Problem to Heavy Fermions*, Cambridge Press, 1993. <u>R. Bulla, T. Costi, Prushcke</u>, *Rev. Mod. Phys* (in press) arXiv 0701105. K.G. Wilson, *Rev. Mod. Phys.* **47** 773 (1975).

#### Lecture 2: Outline

- Kondo effect: Intro.
- Kondo's original idea: Perturbation theory.
- Numerical Renormalization Group (NRG).
- s-d and Anderson models.
- NRG results for the local density of states.

#### "More is Different"



"The behavior of large and complex aggregates of elementary particles, it turns out, is not to be understood in terms of simple extrapolation of the properties of a few particles.

Instead, at each level of complexity entirely new properties appear and the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other."

> Phillip W. Anderson, "More is Different", Science **177** 393 (1972)

#### Can you make "atoms" out of atoms?



#### From atoms to metals, plus atoms...





Top: A.M. Clogston *et al* Phys. Rev. **125** 541(1962). Bottom: M.P. Sarachik *et al* Phys. Rev. **135** A1041 (1964).



## Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin impurity (s-d model):



- <u>Many-body</u> effect: virtual bound state near the <u>Fermi energy</u>.
- AFM coupling (J>0)→ "spin-flip" scattering
- Kondo problem: s-wave coupling with spin impurity (s-d model):



- Perturbation theory in  $J^3$ :
  - Kondo calculated the conductivity in the linear response regime



$$R_{\rm imp}^{\rm spin} \propto J^2 \left[ 1 - 4J \rho_0 \log \left( \frac{k_B T}{D} \right) \right]$$
$$R_{\rm tot} \left( T \right) = aT^5 - c_{\rm imp} R_{\rm imp} \log \left( \frac{k_B T}{D} \right)$$

$$T_{\min} = \left(\frac{R_{\min}D}{5ak_B}\right)^{1/5} c_{\min}^{1/5}$$

 Only <u>one</u> free paramenter: the Kondo temperature T<sub>K</sub>

Temperature at which the  
perturbative expansion  
diverges. 
$$k_B T_K \sim D e^{-1/2J\rho_0}$$

$$R_{tot}(T) = aT^5 - c_{imp}R_{imp}\log\left(\frac{k_BT}{D}\right)$$

What is going on?  $\left\{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Theory diverges } \underline{\textit{logarithmically}} \text{ for } T \rightarrow 0 \text{ or } D \rightarrow \infty. \\ (T < T_K \rightarrow \text{ perturbation expasion no longer holds}) \\ \text{Experiments show } \underline{\textit{finite}} \text{ R as } T \rightarrow 0 \text{ or } D \rightarrow \infty. \\ \rho(\mathcal{E}) \\ \hline \\ -D \\ \mathcal{E}_F \end{array} \right.$ 

## Kondo Impurity and Lattice models

"Spincentrated" Konse: Kondoul attice (e.g., some heavy-Fermion materials)



- Kondo impurity model suitable for diluted impurities in metals.
- Some rare-earth compounds (localized 4f or 5f shells) can be described as "Kondo lattices".
- This includes so called "heavy fermion" materials (e.g. Cerium and Uraniumbased compounds: CeCu<sub>2</sub>Si<sub>2</sub>; UBe<sub>13</sub>; etc).

#### A little bit of Kondo history:

- Early '30s : Resistance minimum in some metals
- Early '50s : theoretical work on impurities in metals "Virtual Bound States" (Friedel)
- 1961: Anderson model for magnetic impurities in metals
  - 1964: s-d model and Kondo solution (PT)
  - 1970: Anderson "Poor's man scaling"
- 1974-75: Wilson's Numerical Renormalization Group (non PT)
- 1980 : Andrei and Wiegmann's exact solution

#### A little bit of Kondo history:

- Early '30s : Resista
- Early '50s : theoreti



in some metals purities in metals

1961: An Kenneth G. Wilson – Physics Nobel Prize in 1982 "for his theory for critical phenomena in connection with phase transitions"

1964: s-d model and Kondersolution (PT) 1970: Anderson "Poor's man scaling"

1974-75: Wilson's Numerical Renormalization Group (non PT)

1980 : Andrei and Wiegmann's exact solution

$$R_{\rm tot}(T) = aT^5 - c_{\rm imp}R_{\rm imp}\log\left(\frac{k_BT}{D}\right)$$

□ Diverges <u>logarithmically</u> for  $T \rightarrow 0$  or  $D \rightarrow \infty$ . What is going on?  $\begin{cases} (T < T_K \rightarrow \text{perturbation expassion no longer holds}) \\ \square \text{ Experiments show } \underline{finite} \text{ R as } T \rightarrow 0 \text{ or } D \rightarrow \infty. \end{cases}$ The log comes from something like: 



#### "Perturbative" Discretization of CB



#### "Perturbative" Discretization of CB



#### Wilson's CB Logarithmic Discretization



#### Wilson's CB Logarithmic Discretization



## Kondo problem: s-d Hamiltonian

Kondo problem: s-wave coupling with spin impurity (s-d model):



#### Kondo s-d Hamiltonian

$$H_{s-d} = J \sum_{k,k'} S^{+} c_{k\downarrow}^{\dagger} c_{k'\uparrow} + S^{-} c_{k\uparrow}^{\dagger} c_{k'\downarrow}$$

$$+ S_{z} \left( c_{k\uparrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right)$$

$$+ \sum_{k} e_{k} c_{k\sigma}^{\dagger} c_{k\sigma}$$

$$-\Lambda^{-1} - \Lambda^{-2} \dots \Lambda^{-2} \Lambda^{-1}$$

$$-\Lambda^{-1} - \Lambda^{-2} \dots \Lambda^{-2} \Lambda^{-1}$$

- From continuum *k* to a *discretized* band.
- Transform H<sub>s-d</sub> into a linear chain form (exact, as long as the chain is infinite):

$$H_{K} = \sum_{n=0}^{\infty} \epsilon_{n} (f_{n}^{+} f_{n+1} + f_{n+1}^{+} f_{n}) - 2J f_{0}^{+} \sigma f_{0} \cdot \tau,$$

#### "New" Hamiltonian (Wilson's RG method)

- Logarithmic CB discretization is the key to avoid divergences!
- Map: conduction band  $\rightarrow$  Linear Chain
  - Lanczos algorithm.
  - □ Site n → new energy scale:

$$\Box \quad D\Lambda^{-(n+1)} < | \mathcal{E}_k^- \mathcal{E}_F | < D\Lambda^{-n}$$

Iterative numerical solution



 $\rho(\varepsilon)$ 

## Logarithmic Discretization.

Steps:

- Slice the conduction band in intervals in a log scale (parameter Λ)
- Continuum spectrum approximated by a single state
- Mapping into a tight binding chain: sites correspond to different energy scales.



#### Wilson's CB Logarithmic Discretization

• Logarithmic Discretization (in space):



FIG. 4. Spherical shells in r space depicting the extents of the wave functions of  $f_n$ . Within their shells, every wave function has oscillations so that they are mutually orthogonal. Alternately one can show that, in the wave-vector space,

#### Wilson's CB Logarithmic Discretization

Logarithmic Discretization (in energy):
 Λ>1



FIG. 1. Logarithmic discretization of the conduction bond. The Fermi energy is at zero and the top and bottom of the conduction bond at  $k \equiv \epsilon/D = +1$  and -1, respectively.

### "New" Hamiltonian (Wilson)

Recurrence relation (Renormalization procedure).

$$H_{N+1} = \sqrt{\Lambda}H_N + \xi_N \sum_{\sigma} f_{N+1\sigma}^{\dagger} f_{N\sigma} + f_{N\sigma}^{\dagger} f_{N+1\sigma}$$



#### "New" Hamiltonian (Wilson)

- Suppose you diagonalize H<sub>N</sub> getting E<sub>k</sub> and |k> and you want to diagonalize H<sub>N+1</sub> using this basis.
- First, you expand your basis:

$$\begin{aligned} |\Omega; k\rangle &= |k\rangle, \\ |\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + |k\rangle, \\ |-\frac{1}{2}; k\rangle &= f_{N+1,-\frac{1}{2}} + |k\rangle, \\ |\frac{1}{2}, -\frac{1}{2}; k\rangle &= f_{N+1,\frac{1}{2}} + f_{N+1,-\frac{1}{2}} + |k\rangle. \end{aligned}$$



Then you calculate <k,a|f<sup>+</sup><sub>N</sub>|k',a'>,
<k,a|f<sub>N</sub>|k',a'>and you have the matrix elements for H<sub>N+1</sub> (sounds easy, right?)

## **Intrinsic Difficulty**

- You ran into problems when N~5. The basis is too large! (grows as 2<sup>(2N+1)</sup>)
  - N=0; (just the impurity); 2 states (up and down)
  - N=1; 8 states
  - N=2; 32 states
  - N=5; 2048 states
  - □ (...) N=20; 2.199x10<sup>12</sup> states:



- 1 byte per state  $\rightarrow$  20 HDs just to store the basis.
- And we might go up to N=180; 1.88x10<sup>109</sup> states.
  - Can we store this basis?

(Hint: The number of atoms in the universe is  $\sim 10^{80}$ )

Cut-off the basis → lowest ~1500 or so in the next round (Even then, you end up having to diagonalize a 4000x4000 matrix...).



 $H_{N+1}$ 

#### **Renormalization Group Transformation**



## Numerical Renormalization Group

What can you do?

- Describe the physics at different energy scales for arbitrary *J*.
- Probe the parameter phase diagram.
- Crossing between the "free" and "screened" magnetic moment regimes.
- Energy scale of the transition is of order T<sub>k</sub>



## **Anderson Model**



$$H = \epsilon_{d}\hat{n}_{d\sigma} + U\hat{n}_{d\uparrow}\hat{n}_{d\downarrow} + \sum_{k}\epsilon_{k}\hat{n}_{k\sigma} + t\sum_{k}\epsilon_{k}\hat{n}_{k\sigma} + t\sum_{k}c_{d\sigma}^{\dagger}c_{k\sigma} + h.c.$$
with
$$\hat{n}_{d\sigma} = c_{d\sigma}^{\dagger}c_{d\sigma} + h.c.$$
"Quantum dot language"
$$(Quantum dot language)$$

$$(Quantum$$

D: bandwidth

t: Hybridization D: bandwidth

metal

• e<sub>d</sub>: energy level

U: Coulomb repulsion

 $e_{F}$ : Fermi energy in the

#### Schrieffer- Wolff Transformation

Anderson Model



#### Schrieffer- Wolff Transformation

From: Anderson Model (single occupation)

$$H = \epsilon_{d}\hat{n}_{d\sigma} + U\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}$$

$$+ \sum_{k} \epsilon_{k}\hat{n}_{k\sigma}$$
with
$$\hat{n}_{d\sigma} = c_{d\sigma}^{\dagger}c_{d\sigma}$$

$$\hat{n}_{k\sigma} = c_{k\sigma}^{\dagger}c_{k\sigma}$$

$$J = t^{2}\sum_{k,k'} \left\{ \frac{1}{U + \epsilon_{d} - \epsilon_{k}'} + \frac{1}{\epsilon_{k} - \epsilon_{d}} \right\}$$
To: s-d (Kondo) Model
$$H_{s-d} = J\sum_{kk'} S^{+}c_{k\downarrow}^{\dagger}c_{k'\uparrow} + S^{-}c_{k\uparrow}^{\dagger}c_{k'\downarrow}$$

$$+ S_{z} \left( c_{k\downarrow}^{\dagger}c_{k'\uparrow} - c_{k\downarrow}^{\dagger}c_{k'\downarrow} \right)$$

$$+ \sum_{k} \epsilon_{k}\hat{n}_{k\sigma}$$



## History of Kondo Phenomena

- Observed in the '30s
- Explained in the '60s
- Numerically Calculated in the '70s (NRG)
- Exactly solved in the '80s (Bethe-Ansatz) So, what's new about it?

#### Kondo correlations observed in many different set ups:

- Transport in quantum dots, quantum wires, etc
- STM measurements of magnetic structures on metallic surfaces (e.g., single atoms, molecules. "Quantum mirage")

...

## Lecture 3 (coming up)