Midterm Exam

## P571

October 5, 2010

## SOLUTION:

## Problem 1:

a)

$$
E^{\prime i}=\left(\cos \phi E_{x}+\sin \phi E_{y},-\sin \phi E_{x}+\cos \phi E_{y}, E_{z}\right)
$$

b)

$$
F^{\prime} \gamma \delta=M^{\gamma}{ }_{\alpha} M^{\delta}{ }_{\beta} F^{\alpha \beta}
$$

c) We know that $F^{\alpha \beta} \neq 0$ if $\alpha=0$ or $\beta=0$. Then,

$$
F^{\prime} \gamma \delta=M^{\gamma}{ }_{0} M^{\delta}{ }_{\beta} F^{0 \beta}+M^{\gamma}{ }_{\alpha} M^{\delta}{ }_{0} F^{\alpha 0},
$$

but in Eq.(4) we see that $M^{\alpha}{ }_{0}=\delta_{\alpha, 0}$ then we obtain:

$$
F^{\prime} \gamma \delta=\delta_{\gamma 0} M_{\beta}^{\delta} F^{0 \beta}+M_{\alpha}^{\gamma} \delta_{\delta 0} F^{\alpha 0}
$$

which shows that the elements of $F^{\prime} \gamma \delta \neq 0$ are $F^{\prime} 0 \delta$ and $F^{\prime} \gamma 0$ with $\gamma, \delta=1,2$, or 3 .
d) Now let's calculate explicitely the non-zero elements of $F^{\prime} \gamma \delta$ :

$$
\begin{gathered}
F^{\prime 01}=M_{1}^{1} F^{01}+M_{2}^{1} F^{02}=-\cos \phi E_{x}-\sin \phi E_{y} \\
F^{\prime 02}=M^{2}{ }_{1} F^{01}+M^{2}{ }_{2} F^{02}=\sin \phi E_{x}-\cos \phi E_{y} \\
F^{\prime 03}=M^{3}{ }_{3} F^{03}=-E_{z} \\
F^{\prime} 10=M_{1}^{1} F^{10}+M^{1}{ }_{2} F^{20}=\cos \phi E_{x}+\sin \phi E_{y} \\
F^{\prime 20}=M^{2}{ }_{1} F^{10}+M_{2}^{2} F^{20}=-\sin \phi E_{x}+\cos \phi E_{y} \\
F^{\prime 30}=M_{3}^{3} F^{30}=E_{z} .
\end{gathered}
$$

Comparing with the components of $E^{\prime} i$ obtained in (a) we get:

$$
F^{\prime \gamma \delta}=\left(\begin{array}{cccc}
0 & -E_{x}^{\prime} & -E_{y}^{\prime} & -E_{z}^{\prime} \\
E_{x}^{\prime} & 0 & 0 & 0 \\
E_{y}^{\prime} & 0 & 0 & 0 \\
E_{z}^{\prime} & 0 & 0 & 0
\end{array}\right)
$$

e) Comparing the results of (d) with (a) we see that we obtain equivalent information using both approaches, i.e., that in system $S^{\prime}$ there is a purely electric field with components $E_{x}^{\prime}=\cos \phi E_{x}+\sin \phi E_{y}, E_{y}^{\prime}=-\sin \phi E_{x}+\cos \phi E_{y}$, and $E_{z}^{\prime}=E_{z}$.

Problem 2:
a) In tensor notation

$$
\begin{aligned}
& \nabla .(\mathbf{A} \times \mathbf{B})=\partial^{i} \epsilon_{i j k} A^{j} B^{k}= \\
& \epsilon_{i j k} B^{k} \partial^{i} A^{j}+\epsilon_{i j k} A^{j} \partial^{i} B^{k}= \\
& B^{k} \epsilon_{k i j} \partial^{i} A^{j}+A^{j} \epsilon_{j k i} \partial^{i} B^{k}= \\
& B^{k} \epsilon_{k i j} \partial^{i} A^{j}-A^{j} \epsilon_{j i k} \partial^{i} B^{k}= \\
& \text { B. }(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{B}) .
\end{aligned}
$$

b) In (a) we showed that

$$
\nabla \cdot(\mathbf{A} \times \mathbf{B})=\partial^{i} \epsilon_{i j k} A^{j} B^{k}
$$

Notice that the expression arises from the contraction of the indices of a tensor of rank 6 that arises from the direct product of the vectors $\partial^{i}, A^{j}$ and $B^{k}$ and the pseudotensor $\epsilon_{i j k}$. Since all the indices are contracted the result is a tensor of rank 0 , i.e., an scalar.
c) Since $\partial^{i}, A^{j}$ and $B^{k}$ are vectors and $\epsilon_{i j k}$ is a pseudotensor, the tensor of rank 0 that resulted in part (b) is a pseudoscalar because it transforms as such under an inversion due to the $|a|=-1$ factor in the transformation upon inversion of $\epsilon_{i j k}$. More explicitely:

$$
\begin{gathered}
\partial^{\prime i} \epsilon_{i j k}^{\prime} A^{\prime}{ }^{j} B^{\prime k}=a^{i}{ }_{m} \partial^{m}|a| a_{i}{ }^{r} a_{j}{ }^{s} a_{k}{ }^{t} \epsilon_{r s t} a^{j}{ }_{u} A^{u} a^{k}{ }_{v} B^{v}= \\
|a| \delta_{m}{ }^{r} \delta^{t}{ }_{v} \delta^{s}{ }_{u} \partial^{m} \epsilon_{r s t} A^{u} B^{v}= \\
|a| \partial^{r} \epsilon_{r s t} A^{r} B^{t} .
\end{gathered}
$$

d) $\nabla \cdot(\mathbf{A} \times \mathbf{B})=0$ if:

$$
\mathbf{A} \times \mathbf{B}=\nabla \times \mathbf{C}
$$

$$
\mathbf{A} \times \mathbf{B}=0
$$

which means that $\mathbf{A}$ and $\mathbf{B}$ are parallel or antiparallel.
If

$$
\mathbf{A} \times \mathbf{B}=\nabla \times \mathbf{C}
$$

If $\mathbf{B}$ is perpendicular to $\nabla \times \mathbf{A}$ and $\mathbf{A}$ is perpendicular to $\nabla \times \mathbf{B}$.
If

$$
\nabla \times \mathbf{A}=\nabla \times \mathbf{B}=0
$$

If

$$
\mathbf{B} \cdot(\nabla \times \mathbf{A})=\mathbf{A} \cdot(\nabla \times \mathbf{B})
$$

If $\mathbf{A}$ and $\mathbf{B}$ are independent of the coordinates or if any of the them is 0 then $\nabla \cdot(\mathbf{A} \times \mathbf{B})$ would trivially be zero. Problem 3:

We know that

$$
\delta(g(x))=\frac{\sum_{i} \delta\left(x-x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|}
$$

where $g\left(x_{i}\right)=0$. Thus, in this case $g(x)=3 x^{2}+x-2$ which vanishes at $x_{1}=2 / 3$ and $x_{2}=-1$. We see that $g^{\prime}(x)=6 x+1$, thus $g^{\prime}\left(x_{1}\right)=5$ and $g^{\prime}\left(x_{2}\right)=-5$. Then

$$
\delta\left(3 x^{2}+x-2\right)=\frac{\delta\left(x-\frac{2}{3}\right)}{|5|}+\frac{\delta(x+1)}{|-5|} .
$$

Then

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(x^{2}+18\right) \delta\left(3 x^{2}+x-2\right) d x=\int_{-\infty}^{\infty} \frac{\left(x^{2}+18\right)}{5}[\delta(x-2 / 3)+\delta(x+1)] d x= \\
=\frac{1}{5}\left(\frac{4}{9}+18+1+18\right)=\frac{337}{45} .
\end{gathered}
$$

## Problem 4:

a) In tensor notation we have:

$$
\epsilon_{i j k} A^{j} \epsilon^{k l m} B_{l} C_{m}=V_{i}
$$

thus, the expresion is a tensor of rank 1.
In order to distinguish between a tensor and a pseudotensor we know that under an inversion a tensor transforms as

$$
T_{i_{1}, \ldots, i_{k}}^{\prime}={a_{i_{1}}}^{j_{1}} \ldots{a_{i_{k}}{ }^{j_{k}}}_{j_{j_{1}, \ldots, j_{k}},}
$$

and a pseudotensor transforms as

$$
S_{i_{1}, \ldots, i_{k}}^{\prime}=|a|{a_{i_{1}}}^{j_{1}} \ldots a_{i_{k}}^{j_{k}} S_{j_{1}, \ldots, j_{k}}
$$

with $|a|=-1$ for the inversion. Notice that $\epsilon_{i j k}$ is a pseudotensor, this means that if we transform $V_{i}$ to $V_{i}^{\prime}$ via an inversion, each of the two Levi-Civita tensors contribute with a factor $|a|=-1$ so that the product of both factors is always 1 . We will use this in the remaining parts of this problem.
b) If $\mathbf{A}, \mathbf{B}$, and $\mathbf{C}$ are vectors we see from the expression obtained in part (a) that under an inversion no additional factors $|a|=-1$ will appear and thus $V_{i}$ transforms as a tensor.
c) If $\mathbf{A}, \mathbf{B}$, and $\mathbf{C}$ are pseudovectors we see from the expression obtained in part (a) that under an inversion three factors $|a|=-1$ will appear and thus $V_{i}$ transforms as a pseudotensor.
d) If $\mathbf{A}$ and $\mathbf{B}$ are pseudovectors and $\mathbf{C}$ is a vector, we see from the expression obtained in part (a) that under an inversion two additional factors $|a|=-1$ will appear and thus $V_{i}$ transforms as a tensor.

