
Midterm Exam #2
P571

November 5, 2009
SOLUTION:

Problem 1:
a) We have to solve Laplace’s equation because the region is free of charge.
b) The equation is

∂2Φ(x, y)

∂x2
+

∂2Φ(x, y)

∂y2
= 0. (1)
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c) A general solution will have the form:

Φ(x, y) =

∞∑
n=1

An sin
nπy

b
sinh

nπx

b
, (2)

It satisfies Eq.(1) and the b.c.’s for Φ = 0. The coeficient An is determined from the b.c. at x = a:

V sin
πy

b
=

∞∑
n=1

An sin
nπy

b
sinh

nπa

b
, (3)

from orthogonality of the sines we see that An = 0 for all n 6= 1 and

A1 =
V

sinh πa
b

. (4)



Then,

Φ(x, y) =
V

sinh πa
b

sin
πy

b
sinh

πx

b
. (5)

d) At the center of the region

Φ(
a

2
,
b

2
) =

V

sinh πa
b

sinh
πa

2b
. (6)

Problem 2:

a) We need to solve Laplace’s equation in two different regions defined by the charged spherical surface. We cannot
work in a single region because there is charge at r = a and Laplace’s equation is not valid there.

b) I expect to obtain the solution in terms of powers of r and Legendre polynomials because the boundary conditions
are defined on a sphere and there is azimuthal symmetry.

c) In region I (r ≤ a) I propose:

ΦI(r, θ) =

∞∑
l=0

Alr
lPl(cos θ), (6)

we set to zero the coefficient of negative powers of r since the potential cannot diverge at r = 0. In region II (r ≥ a)
I propose:

ΦII(r, θ) =

∞∑
l=0

Bl

rl+1
Pl(cos θ), (7)

where the coefficients of positive powers of r have been set to zero because the potential has to vanish as r → ∞.
d) In order to determine the two sets of undetermined coefficients Al and Bl I need two boundary conditions. We

know that at r = a the potential has to be continuous then:

ΦI |r=a = ΦII |r=a. (8)



We also know that the normal component of the electric field across a charged surface has a jump equal to σ/ǫ0 where
σ is the surface density of charge. In this case the normal to the surface is the radial component, then En = Er = −∂Φ

∂r

and the second boundary condition becomes:

∂ΦII

∂r
|r=a −

∂ΦI

∂r
|r=a = −

σ0 cos θ

ǫ0
. (9)

d) From Eq.(8) we find that

Al =
Bl

a2l+1
. (10)

And from Eq.(9) we obtain:

∞∑
l=0

[−(l + 1)
Bl

al+2
− lAla

l−1]Pl(cos θ) = −
σ0 cos θ

ǫ0
. (11)

Notice that cos θ = P1(cos θ). Thus multiplying both sides of Eq.(11) by Pm(cos θ) and integrating over cos θ in the
interval [−1, 1] we obtain:

−(m + 1)
Bm

am+2
− mAmam−1 = −

σ0

ǫ0
δm,1. (12)

Replacing Eq.(10) in Eq.(12) we get:

(2m + 1)
Bm

am+2
=

σ0

ǫ0
δm,1. (13)

Then, if m 6= 1, Am = Bm = 0. If m = 1

B1 =
σ0a

3

3ǫ0
, (14)

and

A1 =
σ0

3ǫ0
. (15)

Replacing in Eq.(6) and (7) we obtain:

ΦI(r, θ) =
σ0

3ǫ0
r cos θ, (16)

and

ΦII(r, θ) =
σ0a

3

3ǫ0r2
cos θ. (17)



Problem 3:

a) We can expand f(x) in terms of Legendre polynomials because they form a set of orthogonal functions in the
interval [−1, 1] in which f(x) is defined.

1

x−1 a 1

2

f(x)

A formal expression for the expansion is given by

f(x) =
∞∑

l=0

alPl(x). (18)

b) Using orthogonality of the Legendre polynimials we find that

al = (2l + 1)

∫ 1

a

Pl(x)dx. (19)

To find the first 3 coefficients we need to set l = 0,1, and 2 and perform the integral. We obtain:

a0 = (1 − a), (20)

a1 =
3

2
(1 − a2), (21)

a2 =
5a

2
(1 − a2). (22)



c) Using the hint we can easily solve the integral in Eq.(19) and we obtain:

al = (2l + 1)

∫ 1

a

Pl(x)dx = (Pl+1(x) − Pl−1(x))|1a = Pl−1(a) − Pl+1(a), (23)

where we have used that Pl(±1) = 1. Then we obtain that

a1 = P0(a) − P2(a) =
3

2
(1 − a2), (24)

and

a2 = P1(a) − P3(a) =
5a

2
(1 − a2). (25)

d) Now let’s calculate

∫ 1

−1

[f(x)]2dx =

∫ 1

−1

∑
l,m

alamPl(x)Pm(x)dx =
∑
l,m

alam

2

2l + 1
δl,m = 2

∞∑
l=0

a2
l

2l + 1
. (26)

Using the result obtained in Eq.(23) valid for l > 0 and Eq.(20) we find that

∫ 1

−1

[f(x)]2dx = 2(1 − a)2 +

∞∑
l=1

(Pl−1(a) − Pl+1(a))2

2l + 1
. (27)

Problem 4:
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a) We use the principle of superposition to write the total potential as the sum of the potential of the individual
charges qi located at ri given by Φi(r) = qi

4πǫ0{r−ri|
. Then,



Φ(r) =
q

4πǫ0
(

1

|r − r1|
+

1

|r− r2|
−

1

|r − r3|
−

1

|r − r4|
) (28)

where the vectors ri are indicated in the figure.
b) The problem does not have azimuthal symmetry and thus, the potential has to be expanded in terms of the

spherical harmonics. Since

1

|r − r′|
= 4π

∞∑
l=0

l∑
m=−l

rl
<

(2l + 1)rl+1
>

Yl,m(θ, φ)Yl,−m(θ′, φ′), (29)

we can replace Eq.(29) in Eq.(28) using that θi = π/2 for all the charges and φ1 = 0, φ2 = π/2, φ3 = π, and
φ4 = 3π/2. Since for r > a, r< = a and r> = r we obtain,

Φ(r, θ, φ) =
q

ǫ0

∞∑
l=0

l∑
m=−l

al

(2l + 1)rl+1
Yl,m(θ, φ)[Yl,−m(

π

2
, 0) + Yl,−m(

π

2
,
π

2
) − Yl,−m(

π

2
, π) − Yl,−m(

π

2
,
3π

2
)]. (30)


