Midterm Exam \#2

P571
November 5, 2009

SOLUTION:

Problem 1:

a) We have to solve Laplace's equation because the region is free of charge.
b) The equation is

$$
\begin{equation*}
\frac{\partial^{2} \Phi(x, y)}{\partial x^{2}}+\frac{\partial^{2} \Phi(x, y)}{\partial y^{2}}=0 . \tag{1}
\end{equation*}
$$

c) A general solution will have the form:

$$
\begin{equation*}
\Phi(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi y}{b} \sinh \frac{n \pi x}{b} \tag{2}
\end{equation*}
$$

It satisfies Eq.(1) and the b.c.'s for $\Phi=0$. The coeficient A_{n} is determined from the b.c. at $x=a$:

$$
\begin{equation*}
V \sin \frac{\pi y}{b}=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi y}{b} \sinh \frac{n \pi a}{b} \tag{3}
\end{equation*}
$$

from orthogonality of the sines we see that $A_{n}=0$ for all $n \neq 1$ and

$$
\begin{equation*}
A_{1}=\frac{V}{\sinh \frac{\pi a}{b}} \tag{4}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\Phi(x, y)=\frac{V}{\sinh \frac{\pi a}{b}} \sin \frac{\pi y}{b} \sinh \frac{\pi x}{b} \tag{5}
\end{equation*}
$$

d) At the center of the region

$$
\begin{equation*}
\Phi\left(\frac{a}{2}, \frac{b}{2}\right)=\frac{V}{\sinh \frac{\pi a}{b}} \sinh \frac{\pi a}{2 b} \tag{6}
\end{equation*}
$$

Problem 2:

a) We need to solve Laplace's equation in two different regions defined by the charged spherical surface. We cannot work in a single region because there is charge at $r=a$ and Laplace's equation is not valid there.
b) I expect to obtain the solution in terms of powers of r and Legendre polynomials because the boundary conditions are defined on a sphere and there is azimuthal symmetry.
c) In region $\mathrm{I}(r \leq a)$ I propose:

$$
\begin{equation*}
\Phi^{I}(r, \theta)=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta) \tag{6}
\end{equation*}
$$

we set to zero the coefficient of negative powers of r since the potential cannot diverge at $r=0$. In region II $(r \geq a)$ I propose:

$$
\begin{equation*}
\Phi^{I I}(r, \theta)=\sum_{l=0}^{\infty} \frac{B_{l}}{r^{l+1}} P_{l}(\cos \theta) \tag{7}
\end{equation*}
$$

where the coefficients of positive powers of r have been set to zero because the potential has to vanish as $r \rightarrow \infty$.
d) In order to determine the two sets of undetermined coefficients A_{l} and B_{l} I need two boundary conditions. We know that at $r=a$ the potential has to be continuous then:

$$
\begin{equation*}
\left.\Phi^{I}\right|_{r=a}=\left.\Phi^{I I}\right|_{r=a} \tag{8}
\end{equation*}
$$

We also know that the normal component of the electric field across a charged surface has a jump equal to σ / ϵ_{0} where σ is the surface density of charge. In this case the normal to the surface is the radial component, then $E_{n}=E_{r}=-\frac{\partial \Phi}{\partial r}$ and the second boundary condition becomes:

$$
\begin{equation*}
\left.\frac{\partial \Phi^{I I}}{\partial r}\right|_{r=a}-\left.\frac{\partial \Phi^{I}}{\partial r}\right|_{r=a}=-\frac{\sigma_{0} \cos \theta}{\epsilon_{0}} \tag{9}
\end{equation*}
$$

d) From Eq.(8) we find that

$$
\begin{equation*}
A_{l}=\frac{B_{l}}{a^{2 l+1}} \tag{10}
\end{equation*}
$$

And from Eq.(9) we obtain:

$$
\begin{equation*}
\sum_{l=0}^{\infty}\left[-(l+1) \frac{B_{l}}{a^{l+2}}-l A_{l} a^{l-1}\right] P_{l}(\cos \theta)=-\frac{\sigma_{0} \cos \theta}{\epsilon_{0}} \tag{11}
\end{equation*}
$$

Notice that $\cos \theta=P_{1}(\cos \theta)$. Thus multiplying both sides of Eq.(11) by $P_{m}(\cos \theta)$ and integrating over $\cos \theta$ in the interval $[-1,1]$ we obtain:

$$
\begin{equation*}
-(m+1) \frac{B_{m}}{a^{m+2}}-m A_{m} a^{m-1}=-\frac{\sigma_{0}}{\epsilon_{0}} \delta_{m, 1} \tag{12}
\end{equation*}
$$

Replacing Eq.(10) in Eq.(12) we get:

$$
\begin{equation*}
(2 m+1) \frac{B_{m}}{a^{m+2}}=\frac{\sigma_{0}}{\epsilon_{0}} \delta_{m, 1} \tag{13}
\end{equation*}
$$

Then, if $m \neq 1, A_{m}=B_{m}=0$. If $m=1$

$$
\begin{equation*}
B_{1}=\frac{\sigma_{0} a^{3}}{3 \epsilon_{0}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1}=\frac{\sigma_{0}}{3 \epsilon_{0}} \tag{15}
\end{equation*}
$$

Replacing in Eq.(6) and (7) we obtain:

$$
\begin{equation*}
\Phi^{I}(r, \theta)=\frac{\sigma_{0}}{3 \epsilon_{0}} r \cos \theta \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{I I}(r, \theta)=\frac{\sigma_{0} a^{3}}{3 \epsilon_{0} r^{2}} \cos \theta \tag{17}
\end{equation*}
$$

Problem 3:

a) We can expand $f(x)$ in terms of Legendre polynomials because they form a set of orthogonal functions in the interval $[-1,1]$ in which $f(x)$ is defined.

A formal expression for the expansion is given by

$$
\begin{equation*}
f(x)=\sum_{l=0}^{\infty} a_{l} P_{l}(x) \tag{18}
\end{equation*}
$$

b) Using orthogonality of the Legendre polynimials we find that

$$
\begin{equation*}
a_{l}=(2 l+1) \int_{a}^{1} P_{l}(x) d x \tag{19}
\end{equation*}
$$

To find the first 3 coefficients we need to set $l=0,1$, and 2 and perform the integral. We obtain:

$$
\begin{gather*}
a_{0}=(1-a), \tag{20}\\
a_{1}=\frac{3}{2}\left(1-a^{2}\right), \tag{21}\\
a_{2}=\frac{5 a}{2}\left(1-a^{2}\right) . \tag{22}
\end{gather*}
$$

c) Using the hint we can easily solve the integral in Eq.(19) and we obtain:

$$
\begin{equation*}
a_{l}=(2 l+1) \int_{a}^{1} P_{l}(x) d x=\left.\left(P_{l+1}(x)-P_{l-1}(x)\right)\right|_{a} ^{1}=P_{l-1}(a)-P_{l+1}(a) \tag{23}
\end{equation*}
$$

where we have used that $P_{l}(\pm 1)=1$. Then we obtain that

$$
\begin{equation*}
a_{1}=P_{0}(a)-P_{2}(a)=\frac{3}{2}\left(1-a^{2}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}=P_{1}(a)-P_{3}(a)=\frac{5 a}{2}\left(1-a^{2}\right) . \tag{25}
\end{equation*}
$$

d) Now let's calculate

$$
\begin{equation*}
\int_{-1}^{1}[f(x)]^{2} d x=\int_{-1}^{1} \sum_{l, m} a_{l} a_{m} P_{l}(x) P_{m}(x) d x=\sum_{l, m} a_{l} a_{m} \frac{2}{2 l+1} \delta_{l, m}=2 \sum_{l=0}^{\infty} \frac{a_{l}^{2}}{2 l+1} \tag{26}
\end{equation*}
$$

Using the result obtained in Eq.(23) valid for $l>0$ and Eq.(20) we find that

$$
\begin{equation*}
\int_{-1}^{1}[f(x)]^{2} d x=2(1-a)^{2}+\sum_{l=1}^{\infty} \frac{\left(P_{l-1}(a)-P_{l+1}(a)\right)^{2}}{2 l+1} \tag{27}
\end{equation*}
$$

Problem 4:

a) We use the principle of superposition to write the total potential as the sum of the potential of the individual charges q_{i} located at \mathbf{r}_{i} given by $\Phi_{i}(\mathbf{r})=\frac{q_{i}}{4 \pi \epsilon_{0}\left\{\mathbf{r}-\mathbf{r}_{i}\right\}}$. Then,

$$
\begin{equation*}
\Phi(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}-\mathbf{r}_{2}\right|}-\frac{1}{\left|\mathbf{r}-\mathbf{r}_{3}\right|}-\frac{1}{\left|\mathbf{r}-\mathbf{r}_{4}\right|}\right) \tag{28}
\end{equation*}
$$

where the vectors \mathbf{r}_{i} are indicated in the figure.
b) The problem does not have azimuthal symmetry and thus, the potential has to be expanded in terms of the spherical harmonics. Since

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r_{<}^{l}}{(2 l+1) r_{>}^{l+1}} Y_{l, m}(\theta, \phi) Y_{l,-m}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{29}
\end{equation*}
$$

we can replace Eq.(29) in Eq.(28) using that $\theta_{i}=\pi / 2$ for all the charges and $\phi_{1}=0, \phi_{2}=\pi / 2, \phi_{3}=\pi$, and $\phi_{4}=3 \pi / 2$. Since for $r>a, r_{<}=a$ and $r_{>}=r$ we obtain,

$$
\begin{equation*}
\Phi(r, \theta, \phi)=\frac{q}{\epsilon_{0}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{a^{l}}{(2 l+1) r^{l+1}} Y_{l, m}(\theta, \phi)\left[Y_{l,-m}\left(\frac{\pi}{2}, 0\right)+Y_{l,-m}\left(\frac{\pi}{2}, \frac{\pi}{2}\right)-Y_{l,-m}\left(\frac{\pi}{2}, \pi\right)-Y_{l,-m}\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)\right] . \tag{30}
\end{equation*}
$$

