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Homework #11

Problem 1:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions
that was obtained in class:
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where x>(x<) is the larger (smaller) between x and x′.
In the problem we are considering the density of charge is

ρ(x′, y′) = qδ(x′)δ(y′ − d). (2)

The potential inside the volume defined by −∞ ≤ x ≤ ∞ and 0 ≤ y ≤ a is given by:
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Since q is at x′ = 0, I expect to have two different expressions for the potential, one for x ≤ 0 and another for x ≥ 0.
Let us first calculate the volume integral which would give us the potential for the charge if all the surfaces were

grounded. Because of Eq.(2) we obtain for x ≤ 0:
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and for x ≥ 0:

ΦII
V (x, y) =

q

πǫ0

∞∑
n=1

e−
πnx

a

n
sin

nπy

a
sin

nπd

a
. (5)

The two expressions can be combined as
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where x>(x<) is the larger (smaller) between x and 0.
Now let’s calculate the surface integral that would give the potential due to the surface potentials in the absence

of charges. Notice that this potential only depends on y and it is trivially given by Φ(x, y) = V y

a
. Using the Green

function we should obtain the same result, but it will be expanded in terms of sin nπy
a

.
The surface integral is given by:
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In this case the “surface” is the line parallel to the x-axis at y = a. The normal is n̂′ = ŷ′. Thus, we have to take
the derivative with respect to y′ and evaluate it at y′ = a.

Then,
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where we have used that cos(nπy′/a)|y′=a = (−1)n.
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Then the surface integral becomes:
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Then we need to split the integral in two pieces: for −∞ ≤ x′ ≤ x we have that x< = x′ and x> = x while for
x ≤ x′ ≤ ∞ we have that x< = x and x> = x′. Then we have that
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Putting this result in Eq.(9) we obtain:
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Then the total potential is given by the sum of Eq.(6) and Eq.(11):
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Important detail: notice that this is the same result that you obtained in Problem 6 of Hw#8. The surface term,
i.e., Eq.(11), provides the contribution to the potential coming from the plane at potential V which was V y/a. In
Eq.(11) y is expanded in terms of the complete orthogonal basis formed by the functions sin nπy

a
in the interval [0, a].


