Homework #11
Problem 1:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions
that was obtained in class:

Tn

e (@>—2<) nry . nwy'

Gp(z,y,2',y) = Z sin —= sin ) (1)

a a

where x5 (x<) is the larger (smaller) between x and 2.
In the problem we are considering the density of charge is

p(x',y') = qd(x")o(y’ — d). (2)

The potential inside the volume defined by —oo <2 < 0o and 0 < y < a is given by:
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Since q is at ' = 0, I expect to have two different expressions for the potential, one for < 0 and another for x > 0.
Let us first calculate the volume integral which would give us the potential for the charge if all the surfaces were
grounded. Because of Eq.(2) we obtain for z < 0:
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and for z > 0:
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The two expressions can be combined as
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where x> (x<) is the larger (smaller) between x and 0.

Now let’s calculate the surface integral that would give the potential due to the surface potentials in the absence
of charges. Notice that this potential only depends on y and it is trivially given by ®(z,y) = % Using the Green
function we should obtain the same result, but it will be expanded in terms of sin 2%,

The surface integral is given by:
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In this case the “surface” is the line parallel to the z-axis at ¥ = a. The normal is 7’ = ¢j’. Thus, we have to take
the derivative with respect to ¥’ and evaluate it at y' = a.
Then,
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where we have used that cos(nmy’/a)|y=a = (—1)™.



Then the surface integral becomes:
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Then we need to split the integral in two pieces: for —oco < z/ < x we have that z. = 2’ and z~ = z while for
z < 2’ < oo we have that z. = x and z~ = /. Then we have that
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Putting this result in Eq.(9) we obtain:
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Then the total potential is given by the sum of Eq.(6) and Eq.(11):
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Important detail: notice that this is the same result that you obtained in Problem 6 of Hw#8. The surface term,
i.e.,, Eq.(11), provides the contribution to the potential coming from the plane at potential V' which was Vy/a. In
Eq. (11) y is expanded in terms of the complete orthogonal basis formed by the functions sin “7¥ in the interval [0, a].



