Homework \#11

Problem 1:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions that was obtained in class:

$$
\begin{equation*}
G_{D}\left(x, y, x^{\prime}, y^{\prime}\right)=4 \sum_{n=1}^{\infty} \frac{e^{-\frac{\pi n}{a}\left(x_{>}-x_{<}\right)}}{n} \sin \frac{n \pi y}{a} \sin \frac{n \pi y^{\prime}}{a} \tag{1}
\end{equation*}
$$

where $x_{>}\left(x_{<}\right)$is the larger (smaller) between x and x^{\prime}.
In the problem we are considering the density of charge is

$$
\begin{equation*}
\rho\left(x^{\prime}, y^{\prime}\right)=q \delta\left(x^{\prime}\right) \delta\left(y^{\prime}-d\right) . \tag{2}
\end{equation*}
$$

The potential inside the volume defined by $-\infty \leq x \leq \infty$ and $0 \leq y \leq a$ is given by:

$$
\begin{equation*}
\Phi(x, y)=\frac{1}{4 \pi \epsilon_{0}} \int_{V} G\left(x, x^{\prime}, y, y^{\prime}\right) \rho\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}-\frac{1}{4 \pi} \oint_{S} \Phi_{s} \frac{\partial G_{D}}{\partial n^{\prime}} d S^{\prime} \tag{3}
\end{equation*}
$$

Since q is at $x^{\prime}=0$, I expect to have two different expressions for the potential, one for $x \leq 0$ and another for $x \geq 0$.
Let us first calculate the volume integral which would give us the potential for the charge if all the surfaces were grounded. Because of Eq.(2) we obtain for $x \leq 0$:

$$
\begin{equation*}
\Phi_{V}^{I}(x, y)=\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{e^{\frac{\pi n x}{a}}}{n} \sin \frac{n \pi y}{a} \sin \frac{n \pi d}{a} \tag{4}
\end{equation*}
$$

and for $x \geq 0$:

$$
\begin{equation*}
\Phi_{V}^{I I}(x, y)=\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{e^{-\frac{\pi n x}{a}}}{n} \sin \frac{n \pi y}{a} \sin \frac{n \pi d}{a} . \tag{5}
\end{equation*}
$$

The two expressions can be combined as

$$
\begin{equation*}
\Phi_{V}(x, y)=\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{e^{-\frac{\pi n}{a}\left(x_{>}-x_{<}\right)}}{n} \sin \frac{n \pi y}{a} \sin \frac{n \pi d}{a}, \tag{6}
\end{equation*}
$$

where $x_{>}\left(x_{<}\right)$is the larger (smaller) between x and 0 .
Now let's calculate the surface integral that would give the potential due to the surface potentials in the absence of charges. Notice that this potential only depends on y and it is trivially given by $\Phi(x, y)=\frac{V y}{a}$. Using the Green function we should obtain the same result, but it will be expanded in terms of $\sin \frac{n \pi y}{a}$.

The surface integral is given by:

$$
\begin{equation*}
-\frac{1}{4 \pi} \oint_{S} \Phi_{s} \frac{\partial G_{D}}{\partial n^{\prime}} d S^{\prime} \tag{7}
\end{equation*}
$$

In this case the "surface" is the line parallel to the x-axis at $y=a$. The normal is $\hat{n}^{\prime}=\hat{y}^{\prime}$. Thus, we have to take the derivative with respect to y^{\prime} and evaluate it at $y^{\prime}=a$.

Then,

$$
\begin{equation*}
\left.\frac{\partial G_{D}}{\partial n^{\prime}}\right|_{S}=\left.\frac{\partial G_{D}}{\partial y^{\prime}}\right|_{y^{\prime}=a}=4 \pi \sum_{n=1}^{\infty} \frac{e^{-\frac{\pi n}{a}\left(x_{>}-x_{<}\right)}}{a} \sin \frac{n \pi y}{a}(-1)^{n} \tag{8}
\end{equation*}
$$

where we have used that $\left.\cos \left(n \pi y^{\prime} / a\right)\right|_{y^{\prime}=a}=(-1)^{n}$.

Then the surface integral becomes:

$$
\begin{equation*}
\Phi_{s}(x, y)=-\frac{V}{a} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin \frac{n \pi y}{a} \int_{-\infty}^{\infty} e^{-\frac{\pi n}{a}\left(x_{>}-x_{<}\right)} d x^{\prime} \tag{9}
\end{equation*}
$$

Then we need to split the integral in two pieces: for $-\infty \leq x^{\prime} \leq x$ we have that $x_{<}=x^{\prime}$ and $x_{>}=x$ while for $x \leq x^{\prime} \leq \infty$ we have that $x_{<}=x$ and $x_{>}=x^{\prime}$. Then we have that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\frac{\pi n}{a}\left(x>-x_{<}\right)} d x^{\prime}=\int_{-\infty}^{x} e^{-\frac{\pi n}{a}\left(x-x^{\prime}\right)} d x^{\prime}+\int_{x}^{\infty} e^{-\frac{\pi n}{a}\left(x^{\prime}-x\right)} d x^{\prime}=\frac{2 a}{n \pi} \tag{10}
\end{equation*}
$$

Putting this result in Eq.(9) we obtain:

$$
\begin{equation*}
\Phi_{s}(x, y)=-\frac{2 V}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin \frac{n \pi y}{a} \tag{11}
\end{equation*}
$$

Then the total potential is given by the sum of Eq.(6) and Eq.(11):

$$
\begin{equation*}
\Phi(x, y)=\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{e^{-\frac{\pi n}{a}\left(x_{>}-x_{<}\right)}}{n} \sin \frac{n \pi y}{a} \sin \frac{n \pi d}{a}-\frac{2 V}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin \frac{n \pi y}{a} \tag{12}
\end{equation*}
$$

Important detail: notice that this is the same result that you obtained in Problem 6 of Hw\#8. The surface term, i.e., Eq.(11), provides the contribution to the potential coming from the plane at potential V which was $V y / a$. In Eq.(11) y is expanded in terms of the complete orthogonal basis formed by the functions $\sin \frac{n \pi y}{a}$ in the interval $[0, a]$.

