Homework \#11

Problem 2:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions that was obtained in class:

$$
\begin{equation*}
G_{D}\left(x, y, x^{\prime}, y^{\prime}\right)=8 \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{a} \sin \frac{n \pi x^{\prime}}{a} \frac{\sinh \left[\left(b-y_{>}\right) \frac{n \pi}{a}\right] \sinh \left(y_{<} \frac{n \pi}{a}\right)}{\sinh \left(\frac{b n \pi}{a}\right)} \tag{1}
\end{equation*}
$$

where $y_{>}\left(y_{<}\right)$is the larger (smaller) between y and y^{\prime}.
In the problem we are considering the density of charge is

$$
\begin{equation*}
\rho\left(x^{\prime}, y^{\prime}\right)=q \delta\left(x^{\prime}-a / 2\right) \delta\left(y^{\prime}-b / 2\right) . \tag{2}
\end{equation*}
$$

The potential inside the volume defined by $0 \leq x \leq a$ and $0 \leq y \leq b$ is given by:

$$
\begin{equation*}
\Phi(x, y)=\frac{1}{4 \pi \epsilon_{0}} \int_{V} G\left(x, x^{\prime}, y, y^{\prime}\right) \rho\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}-\frac{1}{4 \pi} \oint_{S} \Phi_{s} \frac{\partial G_{D}}{\partial n^{\prime}} d S^{\prime} \tag{3}
\end{equation*}
$$

Since q is at $y^{\prime}=b / 2$ I expect to have two different expressions for the potential, one for $y \leq b / 2$ and another for $y \geq b / 2$.

Let us first calculate the volume integral which would give us the potential for the charge if all the surfaces were grounded. Because of Eq.(2) we obtain:

$$
\begin{equation*}
\Phi_{V}(x, y)=\frac{2 q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{a} \sin \frac{n \pi}{2} \frac{\sinh \left[\left(b-y_{>}\right) \frac{n \pi}{a}\right] \sinh \left(y_{<} \frac{n \pi}{a}\right)}{\sinh \left(\frac{b n \pi}{a}\right)} \tag{4}
\end{equation*}
$$

where $y_{>}\left(y_{<}\right)$is the larger (smaller) between y and $b / 2$.
Now let's calculate the surface integral that would give the potential due to the surface potentials in the absence of charges.

The surface integral is given by:

$$
\begin{equation*}
-\frac{1}{4 \pi} \oint_{S} \Phi_{s} \frac{\partial G_{D}}{\partial n^{\prime}} d S^{\prime} \tag{5}
\end{equation*}
$$

In this case the "surface" is the line parallel to the x-axis at $y=b$ for $0 \leq x \leq a$. The normal is $\hat{n}^{\prime}=\hat{y}^{\prime}$. Thus, we have to take the derivative with respect to y^{\prime} and evaluate it at $y^{\prime}=b$. Notice that at this surface always $y \leq y^{\prime}$ then $y^{\prime}=y_{>}$and $y=y_{<}$.

Then,

$$
\begin{align*}
\left.\frac{\partial G_{D}}{\partial n^{\prime}}\right|_{S}=\left.\frac{\partial G_{D}}{\partial y^{\prime}}\right|_{y^{\prime}=b}=8 \pi & \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{a} \sin \frac{n \pi x^{\prime}}{a}\left(-\frac{n \pi}{a}\right) \frac{\left.\cosh \left[\left(b-y^{\prime}\right) \frac{n \pi}{a}\right]\right|_{y^{\prime}=b} \sinh \left(y \frac{n \pi}{a}\right)}{\sinh \left(\frac{b n \pi}{a}\right)}= \\
& -\frac{8 \pi}{a} \sum_{n=1}^{\infty} \sin \frac{n \pi x}{a} \sin \frac{n \pi x^{\prime}}{a} \frac{\sinh \left(y \frac{n \pi}{a}\right)}{\sinh \left(\frac{b n \pi}{a}\right)} \tag{6}
\end{align*}
$$

Then,

$$
\begin{equation*}
\Phi_{s}(x, y)=\frac{2 V}{a} \sum_{n=1}^{\infty} \frac{\sin \frac{n \pi x}{a} \sinh \left(y \frac{n \pi}{a}\right)}{\sinh \left(\frac{b n \pi}{a}\right)} \int_{0}^{a} d x^{\prime} \sin \frac{n \pi x^{\prime}}{a} \tag{7}
\end{equation*}
$$

The integral over x^{\prime} gives $2 a / n \pi$ for n odd and it vanishes for n even. Then

$$
\begin{equation*}
\Phi_{s}(x, y)=\frac{4 V}{\pi} \sum_{j=0}^{\infty} \frac{\sin \frac{(2 j+1) \pi x}{a} \sinh \left(\frac{(2 j+1) \pi y}{a}\right)}{(2 j+1) \sinh \left(\frac{b(2 j+1) \pi}{a}\right)} \tag{8}
\end{equation*}
$$

Then combining both parts we found that

$$
\begin{equation*}
\Phi(x, y)=\frac{2 q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{a} \sin \frac{n \pi}{2} \frac{\sinh \left[\left(b-y_{>}\right) \frac{n \pi}{a}\right] \sinh \left(y_{<} \frac{n \pi}{a}\right)}{\sinh \left(\frac{b n \pi}{a}\right)}+\frac{4 V}{\pi} \sum_{j=0}^{\infty} \frac{\sin \frac{(2 j+1) \pi x}{a} \sinh \left(\frac{(2 j+1) \pi y}{a}\right)}{(2 j+1) \sinh \left(\frac{b(2 j+1) \pi}{a}\right)} \tag{9}
\end{equation*}
$$

