Homework #11

Problem 2:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions
that was obtained in class:
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where ys (y<) is the larger (smaller) between y and y'.
In the problem we are considering the density of charge is

p(a',y') = qd(z’ —a/2)6(y — b/2). (2)

The potential inside the volume defined by 0 < x < a and 0 < y < b is given by:
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Since ¢ is at y' = b/2 1 expect to have two different expressions for the potential, one for y < b/2 and another for
y>b/2.

Let us first calculate the volume integral which would give us the potential for the charge if all the surfaces were
grounded. Because of Eq.(2) we obtain:
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where ys (y<) is the larger (smaller) between y and b/2.
Now let’s calculate the surface integral that would give the potential due to the surface potentials in the absence
of charges.
The surface integral is given by:
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In this case the “surface” is the line parallel to the z-axis at y = b for 0 < 2 < a. The normal is 72’ = ¢’. Thus, we
have to take the derivative with respect to ¥’ and evaluate it at ' = b. Notice that at this surface always y < 3 then

Yy =y>and y = y<.

Then,
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The integral over o’ gives 2a/n7 for n odd and it vanishes for n even. Then
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Then combining both parts we found that
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