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Homework #11

Problem 2:

Since the potential on the surfaces is given we need to use the Green function for Dirichlet boundary conditions
that was obtained in class:
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where y>(y<) is the larger (smaller) between y and y′.
In the problem we are considering the density of charge is

ρ(x′, y′) = qδ(x′ − a/2)δ(y′ − b/2). (2)

The potential inside the volume defined by 0 ≤ x ≤ a and 0 ≤ y ≤ b is given by:
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Since q is at y′ = b/2 I expect to have two different expressions for the potential, one for y ≤ b/2 and another for
y ≥ b/2.

Let us first calculate the volume integral which would give us the potential for the charge if all the surfaces were
grounded. Because of Eq.(2) we obtain:
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where y>(y<) is the larger (smaller) between y and b/2.
Now let’s calculate the surface integral that would give the potential due to the surface potentials in the absence

of charges.
The surface integral is given by:
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In this case the “surface” is the line parallel to the x-axis at y = b for 0 ≤ x ≤ a. The normal is n̂′ = ŷ′. Thus, we
have to take the derivative with respect to y′ and evaluate it at y′ = b. Notice that at this surface always y ≤ y′ then
y′ = y> and y = y<.

Then,
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Then,
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The integral over x′ gives 2a/nπ for n odd and it vanishes for n even. Then
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Then combining both parts we found that
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