Problem 7-2.1.8:

a) $\delta_{i i}$ is just the trace of the 3×3 identity matrix, i.e., 3 .
b) $\delta_{i j} \epsilon_{i j k}=0$ since $\delta_{i j}$ is non zero if $i=j$ but in this case $\epsilon_{i j k}$ vanishes.
c) $\epsilon_{i p q} \epsilon_{j p q}$ does not vanish if the three indices are different. This means that i must be equal to j which gives us a $\delta_{i j}$. But once i is fixed p can take two values and a factor of 2 appears (for example, if $\mathrm{i}=\mathrm{j}=1$ then $\mathrm{p}=2$, $\mathrm{q}=3$ gives the same contribution as $\mathrm{p}=3, \mathrm{q}=2$).
d) $\epsilon_{i j k} \epsilon_{i j k}=6$ since there are 6 terms for which the product is 1 : i can take 3 values, once i is fixed j can take 2 values and there is only one value left for k. So the total number of terms is $2 \times 3=6$.

