Problem 4-4.1.11:

We need to proove that $K_{i j}$ is a tensor knowing that $A^{j k}$ and $B_{i}{ }^{k}$ are tensors. In S:

$$
\begin{equation*}
K_{i j} A^{j k}=B_{i}{ }^{k} \tag{1}
\end{equation*}
$$

In S^{\prime} :

$$
\begin{equation*}
K_{i j}^{\prime} A^{\prime j k}=B_{i}^{\prime k} \tag{2}
\end{equation*}
$$

Since we know that $B_{i}{ }^{k}$ is a tensor

$$
\begin{equation*}
{B_{i}^{\prime k}}^{k}=\frac{\partial x^{l}}{\partial x^{\prime i}} \frac{\partial x^{k}}{\partial x^{m}} B_{l}^{m} \tag{3}
\end{equation*}
$$

Using Eq.(1) to replace B_{l}^{m} in Eq.(3) we obtain:

$$
\begin{equation*}
B_{i}^{\prime k}=\frac{\partial x^{l}}{\partial x^{\prime i}} \frac{\partial x^{\prime k}}{\partial x^{m}} K_{l r} A^{r m} \tag{4}
\end{equation*}
$$

Since A is a tensor we know that

$$
\begin{equation*}
A^{r m}=\frac{\partial x^{r}}{\partial x^{\prime j}} \frac{\partial x^{m}}{\partial x^{\prime k}} A^{\prime j k} \tag{5}
\end{equation*}
$$

Replacing Eq.(5) in Eq.(4) we obtain:

$$
\begin{equation*}
B_{i}^{\prime k}=\frac{\partial x^{l}}{\partial x^{\prime i}} \frac{\partial x^{\prime k}}{\partial x^{m}} K_{l r} \frac{\partial x^{r}}{\partial x^{\prime j}} \frac{\partial x^{m}}{\partial x^{\prime k}} A^{\prime j k} \tag{6}
\end{equation*}
$$

Comparing Eq.(2) with Eq.(6) we get:

$$
\begin{equation*}
K_{i j}^{\prime} A^{\prime j k}=\frac{\partial x^{l}}{\partial x^{\prime i}} \frac{\partial x^{\prime k}}{\partial x^{m}} K_{l r} \frac{\partial x^{r}}{\partial x^{\prime j}} \frac{\partial x^{m}}{\partial x^{\prime k}} A^{\prime j k} \tag{7}
\end{equation*}
$$

Rearranging terms in Eq.(7) we get:

$$
\begin{equation*}
\left(K_{i j}^{\prime}-\frac{\partial x^{l}}{\partial x^{\prime}} \frac{\partial x^{\prime k}}{\partial x^{m}} \frac{\partial x^{r}}{\partial x^{\prime j}} \frac{\partial x^{m}}{\partial x^{\prime k}} K_{l r}\right) A^{\prime j k}=0 \tag{7}
\end{equation*}
$$

Since A is a non-zero arbitrary tensor we know that its coefficient has to vanish to satisfy Eq.(7) then:

$$
\begin{equation*}
K_{i j}^{\prime}=\frac{\partial x^{l}}{\partial x^{\prime i}} \frac{\partial x^{r}}{\partial x^{\prime j}} K_{l r} \tag{8}
\end{equation*}
$$

where we have used that $\frac{\partial x^{k}}{\partial x^{m}} \frac{\partial x^{m}}{\partial x^{k k}}=1$. Eq.(8) shows that K transforms like a covariant tensor of rank 2, then, $K_{i j}$ is a tensor.

