
1

Homework #5

Problem 4 - 4.1.11:

We need to proove that Kij is a tensor knowing that Ajk and Bi
k are tensors.

In S:

KijA
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k. (1)

In S’:
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Since we know that Bi
k is a tensor
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Using Eq.(1) to replace Bm
l in Eq.(3) we obtain:
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Since A is a tensor we know that
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Replacing Eq.(5) in Eq.(4) we obtain:
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Comparing Eq.(2) with Eq.(6) we get:
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Rearranging terms in Eq.(7) we get:
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Since A is a non-zero arbitrary tensor we know that its coefficient has to vanish to satisfy Eq.(7) then:
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where we have used that ∂x′k

∂xm

∂xm

∂x′k = 1. Eq.(8) shows that K transforms like a covariant tensor of rank 2, then, Kij

is a tensor.


