Problem 3-4.1.10:

In S

$$
\begin{equation*}
K_{i j} A^{i} B^{j}=V \tag{1}
\end{equation*}
$$

In S^{\prime}

$$
\begin{equation*}
K_{i j}^{\prime} A^{\prime i} B^{\prime j}=V \tag{2}
\end{equation*}
$$

where we have used that $V^{\prime}=V$ since V is a scalar.
Let's see that $K_{i j}$ transforms like a covariant rank 2 tensor:

$$
\begin{equation*}
V=K_{i j} A^{i} B^{j}=K_{i j} \frac{\partial x^{i}}{\partial x^{\prime r}} A^{\prime r} \frac{\partial x^{j}}{\partial x^{\prime s}} B^{\prime s}=K_{r s}^{\prime} A^{\prime r} B^{\prime s} \tag{3}
\end{equation*}
$$

From (3) we obtain:

$$
\begin{equation*}
\left(K_{i j} \frac{\partial x^{i}}{\partial x^{\prime r}} \frac{\partial x^{j}}{\partial x^{\prime s}}-K_{r s}^{\prime}\right) A^{\prime r} B^{\prime s}=0 \tag{4}
\end{equation*}
$$

Eq.(4) is satisfied if the expression in parenthesis vanishes which means that

$$
\begin{equation*}
K_{r s}^{\prime}=\frac{\partial x^{i}}{\partial x^{\prime r}} \frac{\partial x^{j}}{\partial x^{\prime s}} K_{i j} \tag{5}
\end{equation*}
$$

which means that $K_{i j}$ transforms like a covariant rank 2 tensor.

