Homework \#5

Problem 8-2.1.9:

We need to calculate

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{p q k} \tag{1}
\end{equation*}
$$

We see that in R^{3} the indices can only take 3 values. This means that they have to be all different to each other. Once k is fixed there are two possibilities: i) $i=p$ and $j=q$ or ii) $i=q$ and $j=p$ with i and j different from k in both cases. In the first case $\epsilon_{i j k}=\epsilon_{p q k}$ and in the second $\epsilon_{i j k}=-\epsilon_{p q k}$ then,

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{p q k}=\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p} \tag{2}
\end{equation*}
$$

