Problem 2:

If $\vec{E} \neq 0$ and $\vec{B} = 0$ in K, we know that

$$2(E^{2} - B^{2}) = 2(E'^{2} - B'^{2})$$
$$2(B^{2} - E^{2}) = 2(B'^{2} - E'^{2})$$
$$\vec{E}.\vec{B} = \vec{E}'.\vec{B}'$$

In our case

$$2E^{2} = 2(E'^{2} - B'^{2})$$
$$-2E^{2} = 2(B'^{2} - E'^{2})$$
$$0 = \vec{E}'.\vec{B}'$$

If $\vec{E}' = 0$, this means that $E^2 = -B'^2$. But $E^2 \ge 0$ and $B'^2 \ge 0$, therefore it is not possible. The same happens if we assume $\vec{E} = 0$ and $\vec{B}' = 0$, we obtain $-2B^0 = 2E'^2$ and $2B^2 = -2E'^2$