Problem 2:

If $\vec{E} \neq 0$ and $\vec{B}=0$ in K, we know that

$$
\begin{aligned}
2\left(E^{2}-B^{2}\right) & =2\left(E^{\prime 2}-B^{\prime 2}\right) \\
2\left(B^{2}-E^{2}\right) & =2\left(B^{\prime 2}-E^{2}\right) \\
\vec{E} \cdot \vec{B} & =\vec{E}^{\prime} \cdot \vec{B}^{\prime}
\end{aligned}
$$

In our case

$$
\begin{gathered}
2 E^{2}=2\left(E^{\prime 2}-B^{2}\right) \\
-2 E^{2}=2\left(B^{\prime 2}-E^{\prime 2}\right) \\
0=\vec{E}^{\prime} \cdot \vec{B}^{\prime}
\end{gathered}
$$

If $\vec{E}^{\prime}=0$, this means that $E^{2}=-B^{\prime 2}$. But $E^{2} \geq 0$ and $B^{\prime 2} \geq 0$, therefore it is not possible. The same happens if we assume $\vec{E}=0$ and $\vec{B}^{\prime}=0$, we obtain $-2 B^{0}=2 E^{\prime 2}$ and $2 B^{2}=-2 E^{\prime 2}$

