Problem 3:

If $\vec{B} \neq 0$ and $\vec{E}=0$ in K, we know that

$$
\begin{aligned}
2\left(E^{2}-B^{2}\right) & =2\left(E^{2}-B^{\prime 2}\right) \\
2\left(B^{2}-E^{2}\right) & =2\left(B^{\prime 2}-E^{\prime 2}\right) \\
\vec{E} \cdot \vec{B} & =\vec{E}^{\prime} \cdot \vec{B}^{\prime}
\end{aligned}
$$

In our case

$$
\begin{gathered}
-2 B^{2}=2\left(E^{\prime 2}-B^{2}\right) \\
2 B^{2}=2\left(B^{\prime 2}-E^{2}\right) \\
0=\vec{E}^{\prime} \cdot \vec{B}^{\prime}
\end{gathered}
$$

We see that in any system K^{\prime} the fields \vec{E}^{\prime} and $\overrightarrow{B^{\prime}}$ must be orthogonal to each other. We also see that $B^{2}>E^{2}$ in all reference systems.

