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Homework #8

Problem 6:

The easiest way to solve this problem is by decomposing it into two problems and, using the principle of superpo-
sition, adding both solutions.

Thus, let’s first solve the problem of a charge q located at (0, d) in the region of space defined by −∞ ≤ x ≤ ∞
and 0 ≤ y ≤ a with the potential φ(x, y) set to zero on all the surfaces, i.e., y = 0 and y = a, and at x → ±∞.

In this case we need to divide the space in two regions because Laplace’s equation is not valid at the location of q.
Thus we define region I for x ≤ 0 and region II for x ≥ 0 and we propose:

ΦI(x, y) =

∞∑

n=1

An sin(
πny

a
)e

πnx

a , (1)

and

ΦII(x, y) =

∞∑

n=1

Bn sin(
πny

a
)e

−πnx

a , (2)

where I have used that since Φ(x, 0) = 0 we have to use sin(αy) rather than cos(αy) along the y direction and since
Φ(x, a) = 0, α = πny

a
. Since limx→−∞Φ(x, y) = 0 only the positive real exponential has to appear in ΦI(x, y) and

since limx→∞Φ(x, y) = 0 only the negative real exponential has to appear in ΦII(x, y). Now we are going to use the
boundary conditions at x = 0 to determine the values of An and Bn.

We know that at x = 0 the potential is continuous so

ΦI(0, y) = ΦII(0, y), (3)

and since the normal component of the electric field En = −∂Φ(x,y)
∂n

= −∂Φ(x,y)
∂x

since the normal is x in this case, has
a jump across the surface equal to σ

ǫ0
and σ = qδ(y − d) is the surface density of charge at x = 0 we obtain

−
∂ΦII(x, y)

∂x
|x=0 +

∂ΦI(x, y)

∂x
|x=0 =

qδ(y − d)

ǫ0
. (4)

From Eq.(3) we obtain that

An = Bn, (5)

and from Eq.(4) we obtain that

∞∑

n=1

πn

a
An sin

πny

a
=

qδ(y − d)

ǫ0
. (6)

Now let’s multiply both sides of Eq.(6) by sin πmy
a

and integrate over y in the interval (0, a). On the left hand side

the orthogonality of the sine gives δnm
a
2 and on the right hand side we obtain

q sin πnd

a

ǫ0
then

An =
q

nπǫ0
sin

πnd

a
. (7)

Then we find that

ΦI(x, y) =
q

πǫ0

∞∑

n=1

1

n
sin

πnd

a
sin

πny

a
e

πnx

a , (8)

ΦII(x, y) =
q

πǫ0

∞∑

n=1

1

n
sin

πnd

a
sin

πny

a
e

−πnx

a , (9)
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which can be combined as:

Φ(x, y) =
q

πǫ0

∞∑

n=1

1

n
sin

πnd

a
sin

πny

a
e

−πn(x>−x<)

a , (10)

where x> (x<) is the larger (smaller) between x and 0.
Now we need to consider the second problem, i.e., find the potential in the charge free region defined by −∞ ≤ x ≤ ∞

and 0 ≤ y ≤ a with the potential φ(x, y) set to zero at y = 0 and to V at y = a. We know that in this situation the
planes given by y constant define equipotentials and thus the potential is going to be independent of x. In addition
we know that the field in between the two planes is going to be a constant given by E = −V

a
j then

ΦV (x, y) =
V y

a
. (11)

Notice that in Eq.(11) the form of the solution to Laplace’s equation is not of the form e±αy or e±iαy as we found
in class. The reason for this is that by symmetry we see that the solution cannot depend on x this means that when
we solve

∇2Φ = 0 (12)

we propose

Φ(x, y) = X(x)Y (y) = Y (y), (13)

i.e. X(x) = 1 for all x. Then, replacing (13) in (12) we obtain:

∂2Y

∂y2
= 0, (14)

which has a solution of the form

Y (y) = Ay. (15)

Using the boundary condition we find that A = V
a

and then we obtain the result displayed in Eq.(11).
Then the solution to the total problem is the sum of the two solutions, i.e.,Eq.(10)+Eq.(11):

Φ(x, y) =
q

πǫ0

∞∑

n=1

e−
πn

a
(x>−x<)

n
sin

nπy

a
sin

nπd

a
+

V y

a
. (16)


