Homework \#8

Problem 6:

The easiest way to solve this problem is by decomposing it into two problems and, using the principle of superposition, adding both solutions.

Thus, let's first solve the problem of a charge q located at $(0, d)$ in the region of space defined by $-\infty \leq x \leq \infty$ and $0 \leq y \leq a$ with the potential $\phi(x, y)$ set to zero on all the surfaces, i.e., $y=0$ and $y=a$, and at $x \rightarrow \pm \infty$.

In this case we need to divide the space in two regions because Laplace's equation is not valid at the location of q. Thus we define region I for $x \leq 0$ and region II for $x \geq 0$ and we propose:

$$
\begin{equation*}
\Phi^{I}(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{\pi n y}{a}\right) e^{\frac{\pi n x}{a}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{I I}(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{\pi n y}{a}\right) e^{\frac{-\pi n x}{a}} \tag{2}
\end{equation*}
$$

where I have used that since $\Phi(x, 0)=0$ we have to use $\sin (\alpha y)$ rather than $\cos (\alpha y)$ along the y direction and since $\Phi(x, a)=0, \alpha=\frac{\pi n y}{a}$. Since $\lim _{x \rightarrow-\infty} \Phi(x, y)=0$ only the positive real exponential has to appear in $\Phi^{I}(x, y)$ and since $\lim _{x \rightarrow \infty} \Phi(x, y)=0$ only the negative real exponential has to appear in $\Phi^{I I}(x, y)$. Now we are going to use the boundary conditions at $x=0$ to determine the values of A_{n} and B_{n}.

We know that at $x=0$ the potential is continuous so

$$
\begin{equation*}
\Phi^{I}(0, y)=\Phi^{I I}(0, y) \tag{3}
\end{equation*}
$$

and since the normal component of the electric field $E_{n}=-\frac{\partial \Phi(x, y)}{\partial n}=-\frac{\partial \Phi(x, y)}{\partial x}$ since the normal is x in this case, has a jump across the surface equal to $\frac{\sigma}{\epsilon_{0}}$ and $\sigma=q \delta(y-d)$ is the surface density of charge at $x=0$ we obtain

$$
\begin{equation*}
-\left.\frac{\partial \Phi^{I I}(x, y)}{\partial x}\right|_{x=0}+\left.\frac{\partial \Phi^{I}(x, y)}{\partial x}\right|_{x=0}=\frac{q \delta(y-d)}{\epsilon_{0}} \tag{4}
\end{equation*}
$$

From Eq.(3) we obtain that

$$
\begin{equation*}
A_{n}=B_{n} \tag{5}
\end{equation*}
$$

and from Eq.(4) we obtain that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\pi n}{a} A_{n} \sin \frac{\pi n y}{a}=\frac{q \delta(y-d)}{\epsilon_{0}} \tag{6}
\end{equation*}
$$

Now let's multiply both sides of Eq.(6) by $\sin \frac{\pi m y}{a}$ and integrate over y in the interval $(0, a)$. On the left hand side the orthogonality of the sine gives $\delta_{n m} \frac{a}{2}$ and on the right hand side we obtain $\frac{q \sin \frac{\pi n d}{a}}{\epsilon_{0}}$ then

$$
\begin{equation*}
A_{n}=\frac{q}{n \pi \epsilon_{0}} \sin \frac{\pi n d}{a} \tag{7}
\end{equation*}
$$

Then we find that

$$
\begin{align*}
\Phi^{I}(x, y) & =\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi n d}{a} \sin \frac{\pi n y}{a} e^{\frac{\pi n x}{a}} \tag{8}\\
\Phi^{I I}(x, y) & =\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi n d}{a} \sin \frac{\pi n y}{a} e^{\frac{-\pi n x}{a}} \tag{9}
\end{align*}
$$

which can be combined as:

$$
\begin{equation*}
\Phi(x, y)=\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi n d}{a} \sin \frac{\pi n y}{a} e^{\frac{-\pi n\left(x>-x_{<}\right)}{a}} \tag{10}
\end{equation*}
$$

where $x_{>}\left(x_{<}\right)$is the larger (smaller) between x and 0 .
Now we need to consider the second problem, i.e., find the potential in the charge free region defined by $-\infty \leq x \leq \infty$ and $0 \leq y \leq a$ with the potential $\phi(x, y)$ set to zero at $y=0$ and to V at $y=a$. We know that in this situation the planes given by y constant define equipotentials and thus the potential is going to be independent of x. In addition we know that the field in between the two planes is going to be a constant given by $\mathbf{E}=\frac{-V}{a} \mathbf{j}$ then

$$
\begin{equation*}
\Phi^{V}(x, y)=\frac{V y}{a} \tag{11}
\end{equation*}
$$

Notice that in Eq.(11) the form of the solution to Laplace's equation is not of the form $e^{ \pm \alpha y}$ or $e^{ \pm i \alpha y}$ as we found in class. The reason for this is that by symmetry we see that the solution cannot depend on x this means that when we solve

$$
\begin{equation*}
\nabla^{2} \Phi=0 \tag{12}
\end{equation*}
$$

we propose

$$
\begin{equation*}
\Phi(x, y)=X(x) Y(y)=Y(y) \tag{13}
\end{equation*}
$$

i.e. $X(x)=1$ for all x. Then, replacing (13) in (12) we obtain:

$$
\begin{equation*}
\frac{\partial^{2} Y}{\partial y^{2}}=0 \tag{14}
\end{equation*}
$$

which has a solution of the form

$$
\begin{equation*}
Y(y)=A y \tag{15}
\end{equation*}
$$

Using the boundary condition we find that $A=\frac{V}{a}$ and then we obtain the result displayed in Eq.(11).
Then the solution to the total problem is the sum of the two solutions, i.e.,Eq.(10)+Eq.(11):

$$
\begin{equation*}
\Phi(x, y)=\frac{q}{\pi \epsilon_{0}} \sum_{n=1}^{\infty} \frac{e^{-\frac{\pi n}{a}\left(x_{>}-x_{<}\right)}}{n} \sin \frac{n \pi y}{a} \sin \frac{n \pi d}{a}+\frac{V y}{a} \tag{16}
\end{equation*}
$$

