Homework \#8

Problem 4-9.4.2:

We need to consider the equation

$$
\begin{equation*}
\nabla^{2} \psi+\left(k^{2}+f(\rho)+\frac{1}{\rho^{2}} g(\phi)+h(z)\right) \psi \tag{1}
\end{equation*}
$$

and show that it can be solved by separation of variables in cylindrical coordinates. Thus, we propose:

$$
\begin{equation*}
\psi(\rho, \phi, z)=R(\rho) Q(\phi) Z(z) \tag{2}
\end{equation*}
$$

and we replace (2) in (1) and divide by (2):

$$
\begin{equation*}
\frac{1}{\rho R} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial R}{\partial \rho}\right)+f(\rho)+\frac{1}{Q \rho^{2}} \frac{\partial^{2} Q}{\partial \phi^{2}}+\frac{1}{\rho^{2}} g(\phi)+k^{2}+\frac{1}{Z} \frac{\partial^{2} Z}{\partial z^{2}}+h(z)=0 \tag{3}
\end{equation*}
$$

We see that the last two terms only depend on z so we can equate them to a constant that we call $-\alpha^{2}$ which means that

$$
\begin{equation*}
\frac{1}{\rho R} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial R}{\partial \rho}\right)+f(\rho)+\frac{1}{Q \rho^{2}} \frac{\partial^{2} Q}{\partial \phi^{2}}+\frac{1}{\rho^{2}} g(\phi)+k^{2}=\alpha^{2} \tag{4}
\end{equation*}
$$

to satisfy (3). Multiplying (4) by ρ^{2} we obtain:

$$
\begin{equation*}
\frac{\rho}{R} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial R}{\partial \rho}\right)+\rho^{2} f(\rho)+\left(k^{2}-\alpha^{2}\right) \rho^{2}=-\frac{1}{Q} \frac{\partial^{2} Q}{\partial \phi^{2}}-g(\phi)=\beta^{2} \tag{5}
\end{equation*}
$$

In (5) we see that the equation is again separated and we had equated each term to the separation constant β^{2}.

