Homework \#8

Problem 1:

a) We know that $\epsilon_{\alpha \beta \gamma \delta}$ is a pseudotensor antisymmetric upon exchange of any pair of indices and that $\epsilon_{0123}=1$. In order to obtain the contravariant pseudotensor we need to use the metric tensor $g^{\mu \nu}$ to raise each of the four indices:

$$
\epsilon^{\rho \sigma \tau \phi}=g^{\rho \alpha} g^{\sigma \beta} g^{\tau \gamma} g^{\phi \delta} \epsilon_{\alpha \beta \gamma \delta}=\operatorname{det}\left[g^{\mu \nu}\right] \delta_{\rho}{ }^{\alpha} \delta_{\sigma}{ }^{\beta} \delta_{\tau}{ }^{\gamma} \delta_{\phi}{ }^{\delta} \epsilon_{\alpha \beta \gamma \delta}=-\epsilon_{\rho \sigma \tau \phi} .
$$

Where we have used that $g^{\mu \nu}$ is a diagonal matrix whose diagonal elements are $(1,-1,-1,-1)$ and all of them must appear in the non-vanishing terms of the transformation indicated above.
b) From part a) we see that $\epsilon^{0123}=-1 . \epsilon_{3012}=-1$ because we need to exchange indices 3 times to go from 0123 to 3012 and $\epsilon^{3012}=1$ because of the result found in (a).

