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Phase Diagram of the Two-Dimensional Negative-U Hubbard Model
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Theoretical arguments and numerical calculations are used to discuss the phase diagram of the two-
dimensional negative-U Hubbard model. Our results are consistent with (1) a vanishing transition tem-
perature at half-filling but with a ground state having both superconducting and charge-density-wave
long-range order, and (2) a Kosterlitz-Thouless transition at a finite temperature into a superconducting
state with power-law decay of the pairing correlations away from half-filling.

PACS numbers: 75.10.Jm

The elimination of local phonon' or internal electron-
ic degrees of freedom can give rise to a short-range at-
tractive interaction between the remaining electrons.
Such a "negative-U" interaction leads to charge-density
and pairing correlations. Here we investigate the phase
diagram of the negative-U Hubbard model on a two-
dimensional (2D) square lattice with

0= t g (CisCjs+CjsCis )
(ij )s

where c;, is an operator which creates an electron of spin
s on the ith lattice site, t is a one-electron transfer in-
tegral,

~
U

~
is the interaction strength, and the chemical

potential p determines the band filling. With the con-
vention in Eq. (1), the half-filled band (n) =(n;1+n;l)
=1 has p =0.

The physical properties of the negative-U Hubbard
model depend upon

~
U

~
/t and (n). For dimension

d ~ 3, at half-filling there is a finite critical temperature
separating a disordered phase from a low-temperature
phase where charge-density-wave (CDW) order and su-
perconductivity coexist. Away from half-filling the
low-temperature phase is purely superconducting with a
T, which decreases with the filling. However, for d=2
we know that T, at half ftlling is zero. Does that imply
that away from half-filling in the 2D model, T, is also
zero? Here we present theoretical arguments and results
from numerical simulations and exact diagonalizations
which suggest the type of phase diagram schematically
illustrated in Fig. 1. In this figure the sections depict
slices of a superconducting phase which has Kosterlitz-
Thouless power-law pairing correlations. At half-filling,
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FIG. 1. Schematic T, vs
~
U

~
/t and (n) for the 2D

negative-U Hubbard model. The short-dashed curve is the
weak-coupling BCS prediction and the long-dashed curve is the
strong-coupling energy t /~ U

~
divided by t.

(n) =1, the transition temperature is zero, but in the
ground-state long-range CDW and pairing order coexist.
Away from half-filling, the CDW correlations are short
ranged. As discussed by Nozieres and Schmitt-Rink,
the evolution from weak- to strong-coupling supercon-
ductivity appears to be continuous.

In the absence of the interaction U, the band structure
ep = —2t (cosk +cosky) leads to a single-particle densi-
ty of states which has a logarithmic Van Hove singulari-
ty at half-filling. In addition, the half-filled Fermi sur-
face is perfectly nested for a momentum transfer of
(tr, tr). In weak coupling, these two features give rise to
ln (t/T) singularities in both the pairing and the CDW
channels and lead to a mean-field transition temperature
t exp[ —2tr(t/

~
U

~
) ' l. Away from half-filling, the

characteristic energy for pairing varies as (tp)'I
&&exp( —I/N(0)

~
U

~ ), with %(0)—(St) ', which is
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1
p~

= ge' '(c(JC(J+c(Jc(J) .
JN

(3)

For half-filling, p~ with q =((r, (r) corresponds to the
operator for the CDW order parameter. Under the
canonical transformation ' ' in which c~ t c~ t and

c(J ( 1 ) c(J, Eq. (1) becomes the Hamiltonian ofI„+ly

a positive-U Hubbard model at half-filling in a uniform
magnetic field h =2@. The pair field operator d be-
comes the transverse magnetic operator with q =((r, (r),

1
M, y

= g ( —1)'c(JC(J,

while pI J becomes the longitudinal staggered magneti-
zation

M, = g( —1) (n(J —n(J) .
1

JN
(5)

Now in the strong-coupling ! U! /t&)1 limit, the half-
filled positive-U Hubbard model maps onto an s =

2 an-
tiferromagnetic Heisenberg model with J=4t /! U! .

Thus in the strong-coupling limit, the original negative-U
Hubbard model can be thought of in terms of the prop-
erties of a 2D Heisenberg model in an external magnetic
field h =2p,

H= JgS; S( —h+S;.
(ij ) i

Monte Carlo simulations of the Heisenberg model are
consistent with a vanishing transition temperature and
long-range isotropic antiferromagnetic correlations, with
both transverse (pairing) and longitudinal (CDW) com-
ponents, in the ground state. '' Recent work on the 2D
positive-U Hubbard model shows similar behavior for
weak and strong coupling. ' ' Away from half-filling,
the field h (or chemical potential p) breaks the symme-
try between transverse and longitudinal components and
effectively makes the spins planar. In two dimensions,
this distinction is crucial as it gives rise to a finite transi-
tion temperature. To see how an external magnetic field
produces this effect, it is useful to consider a classical
Heisenberg model. In the presence of h, the spins are
forced to lie in the x-y plane but are canted toward the z
axis with antiferromagnetic correlations in the x-y plane.
In mean field, the canting angle 0 out of the x-y plane is

shown as the short dashed curve in Fig. 1. In the
strong-coupling limit, the pair-binding energy is set by U
and the pair transfer and near-neighbor repulsion are
proportional to t /! U!, shown as the long-dashed curve
in Fig. 1.

We will be interested in pairing and charge-density
correlations described by P =(6 A+ M ) and C(q)
=(p~pq), where

QC(JC(J
1 (2)

iV (

and

set by sino=h/8J, corresponding in the negative-U Hub-
bard model to an occupation (n) = 1 —h/8 J. The
effective xy exchange is

JS(S+1)cos 0=JS(S+1)[1 —(h/8J) ]
=JS(S+1)(n&(2—(n&) . (7)

For a 2D classical xy model, this coupling would give
rise to a Kosterlitz-Thouless transition with

T,/J —(n)(2 —(n)) . (8)
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FIG. 2. q vs T for a classical Heisenberg model in an exter-
nal magnetic field h=J=1. The two curves were obtained by
scaling {Ref. 14) 4x4 vs 16&&16 lattices (&) and 8&8 vs

16&16 lattices (+). Inset: T, vs h obtained from plotting g vs

T and taking T, from the point at which @ =0.25 for diferent
values of h.

In the negative-U Hubbard model, this corresponds to a
transition to a superconducting phase with power-law de-

cay r " of the pairing correlations. Figure 2 shows the
results of a Monte Carlo calculation of the power-law
exponent of a classical 2D Hiesenberg antiferromagnet
in a uniform magnetic field with h =J=1. We calculate

q by comparing (M ~)~N' "t on different sized lat-
tices. '" Note the linear rise of g at low T, characteristic
of the spin-wave behavior of correlations below T, . Cal-
culating t( for different values of h/J and estimating T,
by the temperature where r((T, ) takes the Kosterlitz-
Thouless value g =0.25, we obtain the points shown in

the inset of Fig. 2. Near half-filling, when h/J«1, a
small-angle expansion about the canted state leads to an
estimate of J/! h! for the characteristic size of a vortex
core. Determining T, from the temperature at which
this length becomes comparable to the 2D Heisenberg
correlation length' ' suggests that T, goes to zero for
(n) 1 as

T,/J- —2~/»(
I

1
—(n&

I ),
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where (n) = I —h/8J.
As further support of this picture, Fig. 3 shows Monte

Carlo results for the square of the staggered xy magneti-
zation

(m.', ) =—' Z (s,*s,*+s,'s,")(—i)"') (lo)

FIG. 3. The square of the staggered xy magnetization vs h

at T/1 =0.66 for various sized lattices for the classical Heisen-
berg model in an external field.

FIG. 4. The open circles show &yo! M„»! yol vs the total z
component of spin S, (upper scale) for a quantum s = —,

' anti-
ferromagnetic on a 4X4 lattice. The solid squares are ground-
state Monte Carlo data for P/2 vs (n) for a Hubbard model on
a 4X4 lattice with ! U! /t =8.

seems to have long-range order. The CDW response has
already saturated on the 4x4 lattice and does not change
as the lattice size is increased, indicative of short-range
CDW correlations. ' Figure 5(b) shows how P and

vs h for T=0.66J. Here one sees that as the lattice size
increases, (M ~) appears to saturate for small and large
values of h. However, for intermediate values of h,
where according to Fig. 2 the system is near a Koster-
litz-Thouless phase, (M„~) increases with lattice size.

For the quantum problem, Fig. 4 shows results ob-
tained on 4x 4 lattices for the quantum s =

2 model, and
the negative-U Hubbard model with

~
U ~/t =8. Here

Lanczos exact-diagonalization procedure was used to
calculate the ground-state expectation value of M„~ for
diff'erent values of S„the total z component of spin. Re-
sults for the negative-U Hubbard model were obtained
using a recently developed Monte Carlo ground-state al-
gorithm. ' From the plots one sees that these systems
behave in a similar manner and lend support to the
strong-coupling limit of the phase diagram of Fig. 1.

Further results for the negative-U Hubbard model are
shown in Fig. 5. For the half-filled case, we expect' '
that at T=O there is long-range order in both the pair
field and the CDW. If the asymptotic behavior is
correctly described by spin-wave theory, '

P/N=
i (yo i A

i y ) i
+A/N'
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for a lattice of N sites. Figure 5(a) shows a plot of P/N
vs N ', and we see that the ground-state Monte Carlo
data on 4 X 4 through 10 & 10 lattices are consistent with
this behavior. The same figure shows what happens for
(n) =0.5 and

~
U ~/t =4. In this case only the pair field

FIG. 5. (a) Pair field P and CDW structure factor C(tt, tt)
vs N 't for (n) =1.0 (&), where P and C are equal, and
(n) =0.5 for P (a) and for C (%). Here U/t= —4. (b) P and
C(tt, tt) vs P for different lattice sizes with U/t = —4 and
(.) ='0.5.
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C(~, rr) vary with temperature and lattice size at filling
(n) =0.5. Clearly the CDW correlations are suppressed
while the superconducting correlations grow with both
lattice size and inverse temperature.

Here we have argued that doping away from half-
filling leads to a finite superconducting T, for the 2D
negative-U Hubbard model. Clearly, other mechanisms
can also accomplish this. For example, at half-filling a
near-neighbor attractive interaction V leads in strong
coupling to a superconducting transition for 0 ( i Vi( 2t /i U i and phase separation for

i
V i ) 2t /i U i .

Other interactions, such as a next-near-neighbor hopping
can also favor superconductivity. However, the Hub-
bard model discussed here provides a particularly simple
example which also has interesting consequences for
quantum field theory. The classical Heisenberg model in
2D [the O(3) mode[] has T, =0 because it is asymptoti-
cally free. ' Figure 1 suggests that this property disap-
pears in the presence of a staggered magnetic field.
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