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Electron Transport through a Molecular Conductor with Center-of-Mass Motion
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The linear conductance of a molecular conductor oscillating between two metallic leads is investigated
numerically both for Hubbard interacting and noninteracting electrons. The molecule-leads tunneling
barriers depend on the molecule displacement from its equilibrium position. The results present an
interesting interference which leads to a conductance dip at the electron-hole symmetry point that could be
experimentally observable. It is shown that this dip is caused by the destructive interference between the
purely electronic and phonon-assisted tunneling channels, which are found to carry opposite phases.
When an internal vibrational mode is also active, the electron-hole symmetry is broken but a Fano-like

interference is still observed.
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Molecular electronics has received much attention in the
past decade, particularly since it became possible to fab-
ricate devices in which the active element is a single
molecule [1,2]. A fundamental property of molecular con-
ductors is their discrete electronic spectrum. Although the
weak coupling of the molecule to the two metallic elec-
trodes leads to the broadening of the molecular energy
levels, their discrete nature is maintained. Because of the
small size of these molecules, electronic correlations are
dominant and they lead to interesting many-body effects,
such as the Coulomb blockade and Kondo resonance [3].
These effects have been observed experimentally in mo-
lecular conductors [4] and other nanostructures [5].
Another interesting property of molecules is their flexible
nature. They have an intrinsic spectrum of internal vibra-
tional modes and, when coupled to the electrodes, some
molecules acquire external vibrational modes as well. The
excitation of one or more of these modes modulates the
electronic energy levels and tunneling barriers between the
molecule and the electrodes or between different parts of
the molecule, thus changing the molecular transport prop-
erties. These vibrational effects have been observed in a
number of recent experiments [6,7] and have been the
subject of considerable theoretical investigation [8].

In this work, we study the zero bias conductance of a
molecular conductor model with one relevant electronic
energy level, both with interacting and noninteracting elec-
trons. The molecule is allowed to oscillate between the two
electrodes. This center-of-mass (c.m.) vibrational mode is
treated quantum mechanically and leads to an asymmetric
modulation of the molecule-leads tunneling barriers. The
vibrational excitation is also coupled to the charge on the
molecule. This is due to the fact that the chemical bonds
inside the molecule and the molecule-electrode bonds
depend in general on the molecule’s charge. The results
show an interesting and unexpected conductance cancella-
tion when an odd number of electrons occupy the mole-
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cule. It is discussed below that this cancellation is due to
the destructive interference between the purely electronic
and phonon-assisted tunneling channels, which are found
to carry opposite phases [9]. In this case both channels are
elastic. The phonons are virtual, not thermal.

Figure 1 schematically depicts the system analyzed in
this work. The molecule can oscillate between the source
and drain electrodes, thus modulating the tunneling bar-
riers. In our calculations, this modulation and the electron-
vibration coupling are expanded up to the linear term
[10,11]. The electronic part of the system is modeled using
the Anderson impurity Hamiltonian. The total Hamiltonian
can be written as H = Hy + Hyeads + Hyi—1eads, Where Hy,
is the Hamiltonian of the molecule,

Hy = Vi + Uigifigy + A1 — ig)a + at) + wpata.
)

The first term represents the energy of the relevant mo-
lecular orbital controlled by the gate voltage, the second
term represents the Coulomb repulsion between the elec-
trons occupying the molecular orbital, the third term cou-
ples the vibrational excitation to the net charge on the
molecule (at and a are the phonon operators), and the
fourth term represents the vibrational energy. Hi.q de-
scribes the two leads modeled here as semi-infinite ideal
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FIG. 1 (color online). A schematic of the system studied in this
Letter. The molecule can oscillate between the two leads, thus
modulating the tunneling barriers.
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where c;rl.g (c;rw) creates an electron with spin o at site i in

the left (right) lead. 7 is the hopping amplitude in the leads
and the energy scale (f = 1). Hyj_jeaqs cOnnects the mole-
cule to the leads,

HM—leads = tl[l - a(a + af)]Z(dj;Cloa- + HC)
+ 111+ ala + ah)]> (dhe,, + He),  (2)

where d:r, creates an electron with spin o in the molecule, ¢/
is the hopping parameter between the molecule and the first
site of each lead, and « is a parameter that carries the
dependence of ¢ on the molecule displacement from its
equilibrium position X (note the opposite signs in this
dependence for the two leads). This displacement can be
written in terms of the phonon operators as £ = (a + a').
The total Hamiltonian is invariant under the particle hole
and (a — —a) transformation. In the results shown, unless
otherwise stated the following set of parameters was used:
U=1.0,7=0.2 0wy, =0.2 ,while A and o were varied
[12]. The value of w, was fixed since its increase or
decrease would simply produce the opposite effect of in-
creasing or decreasing A and/or «.

Using the Keldysh formalism [13], the zero bias and
zero temperature conductance can be written as G =
22| 2G(€r)|*[p(eF) P, where Gy, is the Green function
that propagates an electron from the left to the right lead
and p(ey) is the density of states in the leads at the Fermi
level. Note that at zero bias only elastic processes can be
observed. The Green functions are calculated using exact
diagonalization supplemented by a Dyson equation em-
bedding procedure (ED + DE) [14].

It is useful to start by studying briefly the model when
the tunnel barriers do not depend on the vibrational exci-
tation (o = 0). This was previously studied using nu-
merical renormalization group (NRG) techniques [15]. In
this case, the model can be mapped into an effective elec-
tronic Hamiltonian with renormalized parameters [U =
U—2)/wy, Vo=V, + A/wy, and 7 ot exp(;T"g)]
[15,16]. Figures 2(a) and 2(b) show the results in the
interacting electrons case obtained using ED + DE and
NRG, respectively. For weak electron-phonon coupling,
the standard Kondo resonance is obtained with renormal-
ized parameters. For strong electron-phonon coupling, the
“charge Kondo effect” is obtained. Note that the results
obtained using ED + DE are very similar to the NRG
results, clearly capturing the essence of the problem.
Since NRG methods cannot be applied to the c.m. oscil-
lations studied here, and ED + DE appears equally accu-
rate, the results presented below were obtained using this
last technique.

Figure 3 contains the main results of this work.
Figure 3(a) shows the conductance in the interacting elec-
trons’ case. For & = 0, the conductance simply shows a
Kondo resonance peak with reduced width. However, when
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FIG. 2 (color online). (a) NRG and (b) ED + DE results for G
as a function of V, in the Kondo regime for a = 0 and increas-
ing A (A/wy = 0.0, 0.4, 0.8, and 1.2).

a # 0, a conductance dip is obtained when an odd number
of electrons occupy the molecule. Figure 3(b) provides the
average occupation (n,;) of the molecular orbital where it
can be clearly seen that the charging behavior is almost the
same in both cases. Note that for & # 0, the usual Friedel
sum rule [17] G = 222 sin*(3(ny)) is not satisfied and this
can be an indication of a non-Fermi liquid behavior.
Figure 3(c) shows the conductance in the absence of
Coulomb repulsion (U = 0): the same effect is obtained
as for the case @ # 0. The conductance cancellation does
not depend on the electron-electron interaction, which
agrees with the qualitative explanation presented below.
Figure 4 shows G as a function of V, for different values

of A. The dip becomes more pronounced as A increases,
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FIG. 3 (color online). (a) G vs V, in the Kondo regime for a =
0 (solid line) and @ = 0.4 (dashed line), A = 0.2 in both cases.
In the first case, the usual Kondo peak is obtained. In the second
case, a conductance dip is obtained. (b) Average occupation for
the same set of parameters. Note that the charging behavior is
almost the same in both cases. (¢c) G vs V, in the absence of
Coulomb repulsion (U = 0), for &« = 0 (solid line) and a = 0.4
(dashed line), A = 0.1 in both cases. The dip is also obtained in
this case; thus the physical mechanism behind this effect does
not depend on the electron-electron interaction.

256807-2



PRL 95, 256807 (2005)

PHYSICAL REVIEW LETTERS

week ending
16 DECEMBER 2005

1 7

' T Nph=1
AW A hav
0.8 N g et
/ 1 \ i T
/ 1'1 \ W
= 0.6 ! [/ g
S / ‘I: ‘0 q
& )/ il S L R L E
o 04}, i ) Vglu
/ \
\\
0.2 S
\\
0—=06 05 04 03 02 0.l
Vg/U

FIG. 4 (color online). G as a function of V, in the Kondo
regime for &« = 0.4 and A = 0.15, 0.20, and 0.25 (dashed, dotted,
and solid lines, respectively). The dip becomes more pronounced
as A increases. The inset shows the convergence of the results
with the maximum number of phonons (N,). Note that the
qualitative effect of the conductance cancellation is preserved
all the way down to Ny, = 1.

i.e., as the average number of phonons in the ground state
increases. The inset shows the results obtained by truncat-
ing the phonon Hilbert space at a different maximum
number of phonons (Ny,). In all the calculations, Ny, =
7 was used unless stated otherwise. The qualitative effect
of conductance cancellation is obtained all the way down
to Ny, = 1, allowing us to study larger clusters and reduce
size effects to intuitively understand the origin of the dip.

In Fig. 5, an explanation of the conductance dip is
presented. The reasoning starts by noting that Hy_jeaqs in
Eq. (2) can be rewritten as a sum of two channels contrib-
uting to the overall molecule-leads connection. The first
term, t’zo(d:r,c,og + dic,o, + H.c.), represents the purely
electronic tunneling between the molecule and the two
electrodes. The second term, fa(a + a*)za(d:rrc,()a -
dbcp, + He), represents a phonon-assisted tunneling
channel, i.e., the electron absorbs (emits) a phonon upon
entering the molecule and then emits (absorbs) a phonon
upon leaving. Note that both channels are coherent and
elastic. The number of phonons in the system does not
change. Figure 5(a) shows a schematic of the two channels.
These channels were studied separately by keeping only
the relevant term in Hyj_je.qs. The conductance and the
phase carried by each channel were calculated. Figure 5(b)
shows the conductance of the separate channels.
Figure 5(c) contains the conductance when both channels
are active, i.e., when both terms are included in Hyj_jeas-
Figure 5(d) shows the phase difference between the two
channels. Note that for V, = —U /2, the conductance of
each of the channels is 2¢2/h and the phase difference is 7,
leading to a perfect cancellation in the overall conductance
[9]. This interference effect is independent of the electron-
electron interaction and, thus, the cancellation should still
be present for U = 0 as already shown.
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FIG. 5 (color online). (a) A schematic representation of the
two conductance channels, the purely electronic tunneling rep-
resented by the two upper arrows and the ‘‘phonon-assisted
tunneling” channel represented by the two lower arrows.
(b) Partial conductance when only one of the channels is active.
The dotted line shows the conductance of the first channel Gg,
while the dashed line shows the conductance of the second
channel Gy. (¢) G when both channels are active. (d) Phase
difference A® of the two channels. Note that for V,=-U /2,
A® = 7 and Gg = G| = 2¢2/h, thus leading to a perfect can-
cellation in the overall conductance. (A = 0.2, « = 0.4.)

The stability of the dip is tested by adding an internal
vibrational mode which leads to the symmetric modulation
of the tunnel barriers to the leads (breathing mode). To
account for this mode, the following terms were added to
the Hamiltonian: A’ = X'(1 — ig)(b + bT) + wjbTh +
7a'(b + b1 (dbcipy + dbc,o, + Hec.), where the first
term represents the electron-phonon coupling, the second
term represents the breathing vibrational energy, and the
third term represents the subsequent modulation of the
tunnel barriers. The results are shown in Fig. 6. When
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FIG. 6 (color online). The solid line shows G when a breathing
vibrational mode is active (no c.m. motion). The particle-hole
symmetry is broken as expected and no conductance dip is
obtained. The dashed line shows G when both breathing and
c.m. vibrational modes are active. The combined effects of the
two modes lead to a Fano-like interference. The breathing mode
parameters used are A’ = 0.2, wj = 0.3, and &/ = 0.3.
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FIG. 7 (color online). (a) Convergence of G with the size of
the exactly solved cluster L. The solid line, dashed line, and the
circles show the results obtained using L =3, 7, and 11, re-
spectively. In the three cases, Ny, = 3 was used. (b) The real and
(c) imaginary parts of the isolated cluster Green function gy, that
propagates an electron from the left to the right ends of the
cluster (L =3 and V, = =U /2). Note that both parts are equal
to zero at the Fermi level (located at w = 0.0). Thus, the origin
of the conductance dip can be traced back to the exactly solved
cluster. A = 0.2 and @ = 0.4 in the three figures.

only the internal mode is active (solid line), the electron-
hole symmetry is broken but no dip is observed. This
agrees with previous results [18] obtained using NRG
calculations. In the case where both vibrational modes
are active (dashed line), the dip appears. The combined
effect of conductance cancellation and electron-hole asym-
metry leads to a Fano-like interference.

The finite-size effects on the results are shown in
Fig. 7(a), where the convergence of the conductance with
the size of the exactly solved cluster is presented. Note that
increasing the cluster does not change the qualitative effect
of the conductance dip. Moreover, the origin of the con-
ductance dip can be traced back to the exactly solved clus-
ter by studying the Green functions before the embedding
process. Figures 7(b) and 7(c) show the real and imaginary
parts of the Green function g, that propagates an electron
from the left to the right end of the cluster for &« # 0 and
V,=-U /2. Both parts are zero at the Fermi level (w =
0). For @ = 0 (not shown here), g;, has a pole at the Fermi
level and the system is perfectly conducting. When « is
turned on, the pole splits into two, one below and one
above the Fermi level thus causing the zero conductance.

In conclusion, the zero temperature electron transport
through a molecular conductor with center-of-mass motion
was studied numerically for interacting and noninteracting
electrons. The results present an interesting conductance
dip when an odd number of electrons occupy the molecule.
It is argued that this dip is caused by the destructive
interference between the purely electronic and phonon-
assisted tunneling channels, which were found to carry
opposite phases. When an internal vibrational mode is
also active, the particle-hole symmetry is broken but a
Fano-like interference is still obtained. The conductance

cancellation would best be observed on a broad conduc-
tance peak such as the Kondo peak, which is broader than
the resonant tunneling peak.
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