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Abstract

A software library is presented for the polynomial expansion method (PEM) of the density of states (DOS) introduced in
[Y. Motome, N. Furukawa, J. Phys. Soc. Japan 68 (1999) 3853; N. Furukawa, Y. Motome, H. Nakata, Comput. Phys. Comm.
142 (2001) 410]. The library provides all necessary functions for the use of the PEM and its truncated version (TPEM) in a
model independent way. The PEM/TPEM replaces the exact diagonalization of the one electron sector in models for fermions
coupled to classical fields. The computational cost of the algorithniA&)©-with N the number of lattice sites—for the TPEM
[N. Furukawa, Y. Motome, J. Phys. Soc. Japan 73 (2004) 1482] which should be contrasted with the computational cost of the
diagonalization technique that scales av®). The method is applied for the first time to a double exchange model with finite
Hund coupling and also to diluted spin—fermion models.
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No. of linesin distributed program, including test data, etc.: 1707

No. of bytesin distributed program, including test data, etc.. 13644

Distribution format: tar.gz

Operating system: Linux, UNIX

Number of files: 4 plus 1 test program

Programming language used: C

Computer: PC

Nature of the physical problem: The study of correlated electrons coupled to classical fields appears in the treatment of many
materials of much current interest in condensed matter theory, e.g., manganites, diluted magnetic semiconductors and high
temperature superconductors among others.

Method of solution: Typically an exact diagonalization of the electronic sector is performed in this type of models for each
configuration of classical fields, which are integrated using a classical Monte Carlo algorithm. A polynomial expansion of the
density of states is able to replace the exact diagonalization, decreasing the computational complexity of the problem from
O(N%) to O(N) and allowing for the study of larger lattices and more complex and realistic systems.
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1. Introduction

The problem of fermions coupled to classical fields appears in many contexts in condensed matter physics. In
this kind of problems the fermionic operators appear in the Hamiltonian involving only quadratic terms. They can
be solved[4] by diagonalizing the fermions exactly in the one-electron sector at finite temperature for a given
configuration of classical fields. The classical fields are integrated by means of a classical Monte Carlo algorithm.
The procedure, apart from being exact within the error bars, preserves the lattice throughout the calculation making
it possible to study the spatial dependence of the observables. This is a crucial issue to understand inhomogeneitie!
and has been successfully applied to the study of many matggjals the case of manganites such models have
been used to understand the phase diagram of these materials as well as the colossal magnetoresis{dhce effect
i.e. the colossal response of the system to magnetic fields, that could have many important applications. In this
case, the classical field is the loeg) spin. Diluted magnetic semiconductors have also been studied in a similar
way [5]. The inhomogeneities that appear there in the form of ferromagnetic clusters, could only be accessed by
the use of this methof¥]. In addition, a model for high temperature superconductors has been prefjrted
study the competition between d-wave superconductivity and antiferromagnetism that seems to explain interesting
properties of these complex materials.

Despite all these many advantages of the method, it is still very costly in terms of computational effort. Indeed,
the method scales as orde¢A) and the largest lattices that can be accessed in a practical way contain no more
than & sites or its equivalent in lower dimensions. This imposes limitations on the kind of physical systems that
can be studied, for example, the Mn spin concentration in diluted semiconductors has to be high enough, the study
of many band systems becomes difficult, etc.

Trying to solve some of these problems, two of the authors (N.F. and Y.M.) profib&¢h 2001 a procedure
that replaces the exact diagonalization of the one-electron sector by a series expansion of the density of states
in terms of Chebyshev polynomials. The method takes advantage of the sparseness of the Hamiltonian matrix
(which is the case in virtually all systems of physical interest) to perform the matrix—vector products that appear
in the calculation of the terms or moments of the expansion. In what follows, this method will be referred to as
the polynomial expansion method or PEM. In 2003 an improvement of the PEM was pro[8jdeaked on two
controllable approximations that, as will be seen, do not diminish in any way the quality of the results. The first
of these approximations is the truncation of each matrix—vector multiplication, including only products that are
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larger than a certain threshold. The second one is the truncation of the difference in Boltzmann probability weight
or action between two very similar configurations of classical fields. This difference appears in the Monte Carlo
procedure with enormous frequency and so its truncation turns out to be very effective. This new truncated PEM
will be referred to as TPEM.

In this paper we present a C library that implements both the PEM and TPEM. The library is model independent
and basically takes as input the Hamiltonian matrix of practically any model of fermions coupled to classical
fields. To our knowledge no such library is presently available but its usefulness is evident: the TPEM can be easily
separated from other details of the main program(s) and users do not have to be concerned with the technicalities of
the method. In this sense the library presented here places the TPEM at the same level of the exact diagonalization

Another algorithm for the study of spin—fermion models on large lattices is the “Hybrid Monte Carlo Algo-
rithm”, that has been applied to the double-exchange model with infinite coUplintn this method the model
is formulated in the path integral representation, introducing imaginary time, and a Hybrid Monte Carlo (HMC)
procedure is used to evolve the system. The TPEM seems to work best than the HMC at low temperature where the
HMC presents increasing computational cost due to the time discretization. Furthermore, the HMC is applicable
when the bands are connected and do not extend over a wide range of energies, as is the case of finite coupling
systems. The TPEM also allows for easy parallelization, improving the performance even more.

The paper is divided as follows. Secti@rexplains the theory underlying the TPEM. In Sectthe imple-
mentation details and the functions provided by the library are described. Sédimws some simple examples
on how to use the library. Finally, in Sectidnhthe TPEM is applied to a model for manganites with finite coupling
and also to diluted spin—fermion systems.

It is important to emphasize that the application of the TPEM to finite Hund coupling and diluted systems is
novel and shows that the method is suitable to study both systems with disconnected bands and systems with
impurity bands.

2. Theoretical overview

The analysis starts with a model defined by a certain Hamiltori&e; Zijaﬂ cjaHia,jﬂ(cp)cjﬁ, where the
indicesi and j denote a spatial index ardand 8 some internal degree(s) of freedom, e.g., spin or orbital. The
Hamiltonian matrix depends on the configuration of one or more classical fields, represegtedlthough no
explicit indices will be used, the field(g) are supposed to have a spatial dependence. The partition function for
this Hamiltonian is given by:

Z= f dp Y (nlexp(—BH (@) + BuN)In), €y

where|n) are the eigenvectors of the one-electron sector. To calculate the observables, an arbitrary configuration
of classical fieldsp is selected as a starting point. The Boltzmann weight or action of that configurétipp,
is calculated by diagonalizing the one-electron sector at finite temperature. Then a small local change of the field
configuration is proposed, so that the new configuration is denoted bpd its action is recalculated to obtain
the difference in actiom\S = S(¢’) — S(¢). This new configuration is accepted or rejected based on a Monte
Carlo algorithm like Metropolis or heat bath and the cycle starts again. In short, the observables are traditionally
calculated using exact diagonalization of the one-electron sector at every spin “flip” and Monte Carlo integration
for the classical field$4]. The PEM/TPEM substitutes the diagonalization for a polynomial expansion and the
details are presented in Ref&-3].

It will be assumed that the Hamiltonidi(¢) is normalized, which simply implies a re-scaling:

H— (H—b)/a,

a = (Emax— Emin)/27 (2)
b = (Emax+ Emin)/2,
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where Emax and Enin are the maximum and minimum eigenvalues of the original Hamiltonian, respectively. This
in turn implies that the normalized Hamiltonian has eigenvadyes|[—1, 1]. The values of yax and Emin depend
on the particular Hamiltonian under consideration and should be calculated in advance.

The observables that can be calculated diréatlith the TPEM fall into two categories: (i) those that do not
depend directly on fermionic operators, e.g., the magnetization, susceptibility and classical spin—spin correlations
in the double exchange model and (ii) those for which a funck@n) exists such that they can be written as:

1

A@) = [ FoD@.0d. ©
-1
whereD(¢,€) =) 5(e(¢) —€,), ande, are the eigenvalues @f (¢), i.e. D(¢, x) is the density of states of the
system. For the former, the calculation is straightforward and simply involves the average over Monte Carlo config-
urations. For the latter, a functidin(x) can be expanded in terms of Chebyshev polynomials in the following way:

o0
F)=Y" fuTn(x), @
m=0
whereT,, (x) is themth Chebyshev polynomial evaluatedxatLet «r,,, = 2 — §,, 0. The coefficientsf,, are calcu-
lated using the formula:

1

fm=/amF(x)Tm(x)/(7r\/1—x2). (5)
-1
The moments of the density of states are defined by:
Ndim
(@) =Y I Tu(H (@) ), ®)
v=1
whereNgim is the dimension of the one-electron sector. Then, the observable corresponding to the fiinction
can be calculated using:

A@) =Y fnbtm(®). @
In practice, the sum in Eq(7) is performed up to a certain cutoff valud, without appreciable loss in ac-
curacy as described in Reffl,2]. The calculation ofu,, is carried out recursivelylv; m) = T,,,(H)|v) =
2H|v;m — 1) — |v; m — 2) and hence:

pom =Y _ ({m:vjvim) — 1),
' 8)
poms1 =) ((mivlvim) + 1 (v:0]v; 1),
v

are used to calculate the moments. The process involves a sparse matrix—vector product,g8.)|in, yielding
a cost of QN?) for each configuration, i.e. @/%) for each Monte Carlo step. In addition, an improvement of the
present method has been propogjchased on a truncation of the matrix—vector product mentioned before and it
turns out that the resulting algorithm has a complexity linea¥irThis approximation is controlled by the small
parameteep.

21n principle, it would be possible to calculate more complicated observables by expanding not only the density of states but also off-
diagonal elements, e.gf”é}g ()¢ s (0)).



36 G. Alvarez et al. / Computer Physics Communications 168 (2005) 32—45

Moreover, for the Monte Carlo integration procedure, the difference in aciéne= S(¢’) — S(¢) has to be
computed at every step. Since this operation requires calculating two set of momeuataniy’, the authors of
Ref. [3] have also developed a truncation procedure for this trace operation controlled by a small paeameter,
This truncation is based on the observation that #nd¢’ differ only in very few sites then the corresponding
moments will differ only for certain indices allowing for a significant reduction of the computational complexity.
The TPEM library presented here implements this truncation as well.

In what follows, the size of the Hilbert space will be denoted\gyy, and it will depend on the size of the lattice
as well as on the particular model to be studied. For a one-band double exchange model on a ldtsitesoénd
finite coupling,Ngim = 2N ; the factor of 2 accounts for the spin degree of freedom.

3. Thelibrary
3.1. Implementation

The code is written in C and can be called from a C or C++ program. If the library is compiled statically the file
libtpem.a is produced. To use the functions provided by the library the header file “tpem.h” has to be included. In
the code, complex numbers are simply represented by the structure:

typedef struct { double real, imag; } tpemt;
As mentioned before, matrix—vector multiplications must be performed in a sparse way, i.e. multiplications that
yield a null result must be avoided for efficiency. The structure tpem_sparse, defined in tpem_sparse.c, implements
a sparse matrix in compressed row storage (CRS) format. The CRS format puts the subsequent nonzero element
of the matrix rows in contiguous memory locations. We create 3 vectors: one for complex numbers containing the
values of the matrix entries and the other two for integesBiid androwptr). The vectowvalues stores the values of
the non-zero elements of the matrix, as they are traversed in a row-wise fashiaolifleector stores the column
indices of the elements of th@lues vector. That is, ifvalues[k] = a[i][j] thencolind[k] = j. Therowptr vector
stores the locations in thelues vector that start a row, that i@lues(k] = a[i][ ;] if rowptr[i] <i < rowptr[i 4+ 1].
By convention, we defineowptr[ Ngim] to be equal to the number of non-zero elements,in the matrix. The
storage savings of this approach are significant since instead of stqﬁgglements, we need only12+ Ngim+1
storage locations.

To illustrate how the CRS format works, consider the non-symmetric matrix defined by

10 0 0 0 -2 O
3 900 0 3
0O 787 0 O
A=l3 087 5 0 ©)
0 8 0 9 9 13
0 400 2 -1
The CRS format for this matrix is then specified by the arrays:

values = [10 -2 3937873 ... 91342 -1]

colind =l 040151230... 45145]

rowptr = [ 025 8 12 16 19 ]

Besides the obvious saving in storage, CRS format allows for a model independent library implementation and an
easy algorithm for matrix—vector multiplication as showrig. 1

The truncations in the matrix—vector product and in the action difference are calculated with the aid of
tpem_subspace.c which implements a simple stack. The stack is used to hold a “subspace” of kets of the one-
electron Hilbert space that grows dynamically. It is in this subspace that matrix—vector multiplications are per-
formed instead of using the complete Hilbert space.
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void tpemsparse_nult (sparse *matrix, tpemt *dest,
tpemt *src)
{

size_t row, col, k;

tpemt tnp;

for (row = 0; row < matrix->rank; rowt+) {

sum = 0. 0;
for (k=matrix->rowptr[row]; k<matrix->rowptr[rowtl]; k++) {
col = matrix->colind[k];

sum += matri x->val ues[k] * src[col];
}
dest [row] = sum
}
}

Fig. 1. Matrix—vector multiplication function using the CRS formsatc contains the vector to be multiplied and the results are storedst .

3.2. Functions provided by the library

lvoid tpeminit();
Description: It must be called before using the library.

2.void tpemcal cul ate_coeffs (size_t M double *coeffs,
double (*G (int, double));

Description: It calculatesf,, using Eq.(5).

Arguments:
e M cutoff (input).
e coeffs: array of doubles where the coefficients, Eq.(4) will be stored (output).
e doubl e (*F) (doubl e): The function corresponding to the observable that we want to expand as given
by Eq.(3). The function takes doubl e and returns @oubl e (input).

3.void tpem cal cul ate_monent _tpem (tpem sparse *matrix, size_t M
doubl e *nomnent , doubl e epsProd);

Description: It calculates the moments of the density of stajes, as defined by Eq(6). The method used is
TPEM as described if8].

Arguments:
e Mat ri x: the matrix in compressed row storage (input).
e M the cutoff (input).
e nonent : array ofdoubl es to store the moments, E(5) (output).
e epsProd: the tolerance for the matrix—vector product truncation (input).

4.void tpemcal cul ate _nonment _pem (tpem sparse *matrix, sizet M
doubl e *nonent);

Description: Same as previous but it uses PEM algorithm.

voi d tpem cal cul ate_nonent _di ff_t pem (tpem sparse *matri x0, tpem sparse
*matrix1l, size_t M double *nonments, size_t n_support, size_t *support,
doubl e epsTrace, doubl e epsProd);
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Description: It calculates the difference in moments for two matrices, using the trace truncation algorithm.

Arguments:
mat ri x0: The first matrix (input).
mat ri x1: The second matrix (input).
M the cutoff (input).
nmonent s: array ofdoubl es to store the difference in moments (output).
n_suppor t : Number of entries where the two matrices differ (input).
support : Vector containing the column index of the entries where the two matrices differ. For example, in
the double exchange model with finite coupling if sitis being updated thesupport=[i,i +N] where
Nis the number of sites (input).
e epsTrace: The tolerance for the trace truncation algorithm (input).
e epsProd: The tolerance for the matrix—vector multiplication truncation (input).
Note that this function does not calculate the moment difference for any two matrices, only for matrices that differ
in indices specified bp_support andsupport as explained above.

5.void tpemcal cul ate_nonent _diff_pem (tpem sparse *nmatri xQ tpem sparse
*matrix1l, size t M double *nmonents);

Description: It calculates the difference in moments for two matrices without approximations. This function
is provided for easy integration of PEM and TPEM algorithms. Since there is no truncation, the support array, its
size and the tolerances are not needed.

6.doubl e tpem expansion (size t M double *nonents, double *coeffs)
Description: Given f,, andu,, calculatesA(¢) as given by Eq(7).
7.void tpemfinalize();

Description: It can be called to free the resources used by the library and reset all input.

4, Simple examples
4.1. Calculating an integral

To illustrate the use of the library several integrals will be calculated based on a density of Btategjiven
by the one-dimensional spinless double exchange model with random potdntialbhose Hamiltonian is:

A=—1 3" & éjo+> Vids. (10)
(ij),o i

The complete code discussed in this section is provided in the file tpem_test.c. The most important steps will be
explained here. The matrix used is 49@00, is calculated in the CRS format and normalized so that its eigenval-
ues are in the intervdl1, 1] as explained in Sectiod and in Eq.(2). The library must be initialized by calling

the functiont pem_i ni t . Let us defineE (x) = 5.0x (1.0 — tanh(10.0x))° and caIcuIatq’_llD(x)E(x) dx apply-

ing both exact diagonalization and the TPEM. In tpem_test.c the diagonalization is done by calling the function
di ag_appl y. Next the integral is performed using the TPEM for different values of the cutdffand fixed

€pr = 107° andey = 1072 in the functiont pem appl y. The code is self-explanatory and shows the ease of use

of the library: First, the coefficients need to be calculated using:

3 This function emulates an energy function for a fermionic system.
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<AS(x)> sgx):[og(ng’z”")

<E(x)>  E(q)=5x[1-tanh{10x)]

[+] T T T T T T
780! oTPEM Sl EXACT=7.624331342551
no £,,=0.00001 AT ]
i e £,=0.001
-80 '-}\. a dt‘h Fn‘h n&v..avusn..w - Q TPEM =0.000
YRS |  IPEM. &' 0
FR A 2o TPEM, £,=0.001
-820F J  EXACT=-802.327051 o o e, =0.00001
10 15 20 25 30 35 40 10 15 20 25 30 35 40
Cutoff M Cutoff M

(@) (b)

Fig. 2. (a)(E(x)) calculated using the TPEM with the parameters shown vs. the caofiThe exact value is also indicated. () S(x))

calculated using the TPEM with and without trace truncation vs. the cutbffin the former casey = 0.001 and in the latteeyy = 0. The
exact value is also indicated.

77 O

| [coTPEM, M=30 ]
>'780 — Exact Diag.
=
& -790" .
LlJ o 4
-800F o .

B8 6 4 2 0
loge,)

Fig. 3. TPEM calculatedE) for different values otpy. Thex-axis is given in logarithmic scale. The value(df) from the exact diagonalization
technique is also indicated.

tpem cal cul ate _coeffs (cutoff, coeffs, funcptr);

Next, the moments are obtained by calling:
t pem cal cul ate_nonent _tpem(nmatrix, cutoff, nonent, eps);

Finally, the integral is calculated simply by multiplying the moments times the coefficients:
ret = tpem expansion (cutoff, nonent, coeffs);

The output of the program is presented at the end arfeign2(@). Similarly, other integrals are calculated in
tpem_test.c with the functioN (x) = 0.5(1.0 — tanh(10.0x)). In both cases, it can be seen that afier: 30 the
results agree with the ones obtained by applying the traditional diagonalization method. MoreoverMf evéy

is considered then the convergence i) is achieved for a much smaller value Mf, namelyM ~ 10.

4.2. Using tracetruncation

The last part of tpem_test.c tests the trace truncation. Consider two matrices corresponding to a one-dimensional
spinless double exchange model with random potentialg1B9.that differ only in the value of the potential at the
first site. Consider the functios,(x) = log(1.0 + exp(—10.0x)), which emulates the action. The testing program
calculates the difference i$(x) for both matrices in three ways: (i) with the exact diagonalization, (ii) by using the
TPEM without trace truncation, and (iii) by using trace truncation. The last two results are parameterized in terms
of M and both assumey = 10~° whereas:, = 0 when no trace truncation is used amd= 103 in the second
case.

The results are presentedkig. 2(b). Both TPEM calculations agree with the exact diagonalization after
20.
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The dependence of the quality of the resultsegnis shown inFig. 3 for the functionE(x) where it can be
seen thakp = 103 is enough to obtain very high accuracy for this model. However, for the systems that will be
described in the next section we have found #aashould be as small as 1®for the results to be accurate, and
this value will be used in the rest of this work.

5. Advanced applications: TPEM and Monte Carlo
5.1. Double exchange model at finite coupling

Double exchange models appear in the description of the colossal magnetoresistance effect (CMR) in mangan-
ites where the electron—phonon coupling and the Coulomb interactions are usually nefdlettétdese models
can correctly produce ferromagnetic phases as long as the Hund coupling is large enough. In this case, the electron:
directly jump from manganese to manganese spin and their kinetic energy is minimized if these spins are aligned.
The Hamiltonian of the system in the one-band approximation can be writ{éid 42}

H=—t Zéitréj“_‘]zgi'&i’ (11)
(ij)o
whereéjﬂ creates a carrier at sitewith spino. The carrier-spin operator interacting ferromagnetically with the

localized Mn-spirﬁ‘,- iso; = Za’ﬂ éfa&a,ﬂéi,g. On a cubic lattice of dimensiob the largest and smallest spectrum
bounds of Hamiltonian equatiofil) are Emin = —2tD — J and Emax = —2tD + J, respectively. To test the

TPEM for this physical model, we start with the interesting case of a ferromagnetic to paramagnetic transition. The
couplingJ is chosen to bg = 8¢ and the electronic density is adjusted with= —8¢ to obtain a quarter filling,

i.e.n =0.5. We have performed 1000 thermalization and 1000 measurements which were enough to achieve both
convergence and small errors. The results for the magnetization of the system, defined as

|M|=%'Z§i
i

are shown inFig. 4 and compared to the traditional exact diagonalization calculation, where the high accuracy
of the method can be seen clearly. We repeat the calculations for larger lattices and also measure the magnetic
susceptibility,y , as a function of the temperature (3€g. 5).

The boundary conditions used are anti-periodic in one direction and periodic in the other two. This is a numerical
trick in the sense that it is an effective way to lift the degeneracy due to small size lattices. This degeneracy affects
the form of the density of states making it difficult to expand it when performing simulations.ofhé effect

(12)

IMI} oEXACT

0.8F o TPEM, M=30,
! 5 3

o6l e =107, =107

0.4-' R \‘ -

0'2_' a0 SN

0.0 0.1 0.2 0.3 0.4

Fig. 4. Magnetization vs. temperaturg, on a # attice for model(11), calculated using both exact diagonalization and the TPEM with the
indicated parameters. The maximum possible valudifis 1.
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Fig. 5. TPEM calculated (a) magnetization ¥sand (b)x vs. T for the lattices and parameters indicated.

T T T T T T T
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3 601 ' -
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@ 401 - e =10
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500400 600 800 T000 9d00 005 0.0 0.15 020
Number of Sites T
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Fig. 6. (a) CPU times for the TPEM algorithm applied to mogel) using 2000 Monte Carlo stepsf = 30, epr = 105 e¢r=103o0na
3.06 GHz PC. The linear fit yields = 0.0782c — 3.3271. The CPU times required for the exact diagonalization procedure are also shown.
(b) |M| vs. T for size-extrapolated data (lattices use®l; @, 8% and 1¢) and estimation of the critical exponeit

is less and less relevant as size increases. Moreover, the choice of boundary conditions does not matter in the
thermodynamic limit. Twisted boundary conditions has been used extensively in numerical simyl8i@A$

The CPU times to perform these computations are shovigng(a) making use of a conventional cluster of
Linux PCs with 3.06 GHz of clock frequency each. Even using commodity PCs the CPU user time to perform
calculations on the largest cluster studied®, Mas less than 3 days. The results show that the CPU time scales
linearly with the size of the system as predicted by the thg®ryMoreover, the algorithm can be parallelized.
This is because calculation of the moments in @gjis completely independent for each basis|két In this way
the basis can be partitioned in such a way that each processor calculates the moments corresponding to a portio
of the basis. The CPU time to calculate the moments on each processor is proportiSgal/t¥pg, where Npg
is the number of processors. It is important to remark that the data to be moved between different nodes are small
compared to calculations in each node, the communication time is proportiod&ge. Communication among
nodes is mainly done here to add up all the moments. A version of the TPEM library that supports parallelization
will be available in the future.

The value offc obtained from the; vs. T curves is approximateljic = 0.12r atJ = 8¢ in very good agreement
with previously calculated valug45,16] In addition, we calculated the scaling coefficightlefined by|M| «
(Tc — T)#, after having made a size-extrapolation, i.e. after taking the thermodynamic limit. The result is shown
in Fig. 6b) and is within the error margin of the value given for the Universality class of the Heisenberg model.
More information about the determination of critical exponents can be found ifRéf.
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Fig. 7.|M| vs.T/t ona # lattice calculated using the TPEM with the parameters indicated. The result given by the diagonalization method is
also shown. 10,000 thermalization Monte Carlo iterations and 10,000 measurements were performed. The same random configuration for the
spatial location of the classical spins was considered in all cases.

5.2. Diluted systems

The Hamiltonian for the diluted spin—fermion model that will be considered here is given i Begxcept that
the exchange termis replaced by ; S;-5;,i.e. localized spins are present on only a sulbs#tthe lattice sites.
Through nearest-neighbor hopping, the carriers can hapytsite of the square or cubic lattice. In the same way
as in the case of the double-exchange model, for diluted systems we have used periodic boundary conditions for
faster convergence. These are specified by the pliagdsn/2, 37 /4) in thex, y andz directions, respectively.

It is important to remark that Monte Carlo calculations on diluted spin systems with concentratidnare
1/x times faster than the concentrated case since there are less sites with spins to propose a spin change.

In this case the density of states will have a more complicated shape, usually including a small impurity band.
Therefore, it is interesting to see whether the TPEM is capable of treating this case. The comparison is provided
in Fig. 7 for a concentration of 32 spins on & kttice with approximately 16 electrons, where it can be seen
that the TPEM algorithm converges fof = 40, ¢, = 10~ and €pr = 1072, This simple test shows that even in
the case of systems with impurity bands and positional disorder, the expansion yields results compatible with the
exact treatment. Therefore, there is much potential for the use of this technique in the area of diluted magnetic
semiconductors.

5.3. Convergence

The expansion parameters required for convergence, i.e. the ddtafid the thresholds, andep,, can be
calculated on a small lattice where the exact diagonalization technique can be used to check the T/PEM algorithm.
Since these numbers do not depend on the size of the system (only on the mofR])), e they can be safely
used on larger lattices. This is showrHig. 7where unlike for the concentrated system in this case nelther30
nor ey = 10~° is enough for convergence bt = 40, = 10~ andep, = 107° is required. On the other hand, the
double-exchange model, E@.1), with infinite J (not studied here but discussedi8]) converges with a cutoff
smaller thanVf = 30. This is because the finite coupling system density-of-states is composed of two disconnected
bands separated by approximatelyy 2nd so the spectrum extends over a wide range of energies whereas in the
infinite coupling system there is a single connected band resulting in a faster convergence.

Therefore, the reader and user of the TPEM library should not assume that the values presented in the previous
examples will guarantee convergence for a particular model but should instead perform a check similar to the one
presented in this section to determine the minimum value of the cufaihd the maximum values ef; andep;
required for convergence.
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6. Conclusions

In summary, we have provided a software library that implements the TPEM for fermion systems coupled to
classical fields. This library will allow theorists to study a variety of systems employing the TPEM at the same
level that, for instance, the LAPACK librafit9] is being used for exact diagonalization.

The TPEM has an enormous potential. For example, studies of diluted magnetic semiconductors that had not
been possible before with more than one band will now be accessible and the results will be presented elsewhere
These studies are crucial to understand the properties of magnetic semiconductors and will help in the search
for similar compounds with higher Curie temperatures. These high-Curie temperature compounds would in turn
be useful for technological applications, for example in the fabrication of spin electronic or spintronic devices
[20]. The possibility of studying larger systems will not merely imply a better estimation of the physical observ-
ables but will allow for the study of more complex systems like transition metal oxides with realistic bands and
nanostructures.
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Appendix A. Test run output

Rk S kR b O I kS SR kS Rk I R

*¥rxxx% TESTI NG TRUNCATED PCLYNOM AL EXPANS| QN *** %% **xx %

EEE R R S S I S O S O

This testing program cal cul ates nodel properties in two ways:
(i) Using standard di agonali zation

(ii) Using the truncated pol ynoni al expansion nethod

Al tests are done for a nearest neighbor interaction with
random (di agonal ) potenti al s.

TEST 1: MEAN VALUE FOR THE FUNCTI ON:
N(x) = 0.5 * (1.0 - tanh (10.0 * X))

** Using diagonalization <N>=195.349187

** Using TPEM <N>=(cutoff--->infinity) IinckN cutoff> where <N cutoff>is
cutof f <N _cutof f>%Error(conpared to diag.)

10 194. 740524890737 0.311577%

11 194. 921830592607 0.218765%
12 194. 265186764692 0.554904%
13 194. 136543222392 0. 620757%
14 194. 315979389497 0. 528903%
15 194. 408557066075 0.481512%
16 194.679187298809 0. 342975%
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17 194.612068307437 0. 377334%
18 195. 036519662839 0. 160056%
19 195. 085374546781 0. 135047%
20 195. 361097093739 0. 006097%
21 195. 325459995073 0. 012146%
22 195. 550660927328 0. 103135%
23 195. 576686770534 0.116458%
24 195.568643202933 0. 112340%
25 195. 549624351656 0. 102605%
26 195.521318469307 0.088115%
27 195.535221730693 0. 095232%
28 195. 475638686769 0.064731%
29 195. 465473123028 0. 059527%
30 195.430165380516 0.041453%
31 195. 437598886027 0.045258%
32 195. 398432059641 0. 025209%
33 195. 392996060833 0. 022426%
34 195. 392858690195 0. 022356%
35 195. 396834086245 0. 024391%
36 195.380978851635 0.016274%
37 195.378071566221 0.014786%
38 195. 355235557817 0. 003096%
39 195. 357361742974 0. 004185%
40 195. 345473742639 0. 001901%

TEST 2: MEAN VALUE FOR THE FUNCTI ON:
E(x) =5.0* x * (1.0 - tanh (10.0 * X))

** Using diagonalization <E>=-802.327051

** Using TPEM <E>=(cutoff--> infinity) |imE_cutoff> where <E cutoff>is
cutof f <E cutof f>%rror(conpared to diag.)

(OUTPUT OM TTED, SEE FI G 2a)

TEST 3: MEAN VALUE AND DI FFERENCE FOR THE FUNCTI ON:
S(x) =1og (1.0 + exp (-20.0 * x))

** Using diagonalization <S[matrix0]>= 854.249004021717

** Using diagonalization <S[matrix1]>= 846. 624672679166

** Using diagonalization <S[natrix1]>-<S[matrix0]>=7.624331342551
** Using TPEM <S>=(cutoff--> infinity) IinmS_cutoff>

cutoff Delta S cutoff S cutoff[diff] Error (to diag.)

(OQUTPUT OM TTED, SEE FI G 2b)
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