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Considerable progress has been recently made in the theoretical understanding of the colossal magnetore-
sistance �CMR� effect in manganites. The existence of inhomogeneous states has been shown to be directly
related with this phenomenon, both in theoretical studies and experimental investigations. The analysis of
simple models with two competing states and a resistor network approximation to calculate conductances has
confirmed that CMR effects can be theoretically reproduced using nonuniform clustered states. However, a
direct computational study of the CMR effect in realistic models has been difficult since large clusters are
needed for this purpose. In this paper, the recently proposed truncated polynomial expansion method �TPEM�
for spin-fermion systems is tested using the double-exchange one-orbital, with finite Hund coupling JH, and
two-orbital, with infinite JH, models. Two dimensional lattices as large as 48�48 are studied, far larger than
those that can be handled with standard exact diagonalization �DIAG� techniques for the fermionic sector. The
clean limit �i.e., without quenched disorder� is analyzed here in detail. Phase diagrams are obtained, showing
first-order transitions separating ferromagnetic metallic from insulating states. A huge magnetoresistance is
found at low temperatures by including small magnetic fields, in excellent agreement with experiments.
However, at temperatures above the Curie transition the effect is much smaller confirming that the standard
finite-temperature CMR phenomenon cannot be understood using homogeneous states. By comparing results
between the two methods, TPEM and DIAG, on small lattices, and by analyzing the systematic behavior with
increasing cluster sizes, it is concluded that the TPEM is accurate enough to handle realistic manganite models
on large systems. Our results contribute to the next challenge in theoretical studies of manganites, namely a
frontal computational attack of the colossal magnetoresistance phenomenon using double-exchange-like mod-
els, on large clusters, and including quenched disorder.
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I. INTRODUCTION

The study of transition metal oxides �TMOs� has been
among the most important areas of investigations in con-
densed matter physics in the last two decades. The excite-
ment in this context started with the high-temperature super-
conductors and was later followed by the discovery of the
colossal magnetoresistance in manganites,1–8 as well as a
plethora of equally interesting phenomena in several other
oxides. Strong correlations �i.e., large electron-electron or
electron-phonon couplings, or both� play a major role in the
physics of these materials. In addition, the presence of nearly
degenerate states renders some of these oxides highly sus-
ceptible to external perturbations. In fact, TMOs appear to
share a phenomenology similar to that of complex systems,
with nonlinearities and sensitivity to details.9

We focus in this work on the manganites, area where in
recent years considerable progress has been made, both in
theory and experiments.6–8 In the late 1990’s, it was pre-
dicted that many Mn oxides should be inhomogeneous at the
nanoscale, due to the unveiling of tendencies toward elec-
tronic phase separation.10–17 On the experimental front, the
evidence for inhomogeneous states was rapidly gathered and
it is by now widely accepted, with building blocks typically

having small nanoscale sizes.18–21 Subsequent theoretical
work showed that similar tendencies can also occur after the
inclusion of quenched disorder effects—caused, for instance,
by chemical doping—near first-order phase transitions.22,23

The key influence of quenched disorder was also observed in
simulations of the one-orbital model for manganites includ-
ing cooperative phonons24,25 and also for two orbitals with
Jahn-Teller phonons.26,27 This key role of quenched disorder
postulated by theory was observed experimentally using a
Mn-oxide compound that can be prepared both in crystal
ordered and disordered forms.28–30 Remarkably, only the lat-
ter presents a colossal magnetoresistance �CMR� effect.

While the presence of quenched disorder was theoreti-
cally found to generate metal insulator transitions similar to
those found experimentally, the actual existence of large
magnetotransport effects is difficult to test in unbiased theo-
retical studies. Using toy models that have phase competition
and first-order transitions, and supplementing the investiga-
tions with a random-resistor network approximation, huge
magnetoresistances were obtained in resistance vs tempera-
ture profiles in excellent agreement with experiments.31,32

However, it is certainly desirable to carry out similar inves-
tigations in more realistic models, of the double-exchange
variety, and with quantum mechanical procedures to calcu-
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late the conductances. Alas, this task is tremendously diffi-
cult with standard computational methods that rely on the
exact diagonalization of the fermionic sector and the Monte
Carlo simulation of the classical t2g spins.6–8 The effort in
this context grows as N4, with N the number of sites, se-
verely limiting the clusters that can be studied. Since theory
suggests that physics related with percolative phenomena is
anticipated upon the introduction of magnetic fields in nano-
clustered states,6–8,25 large clusters must be used for accurate
simulations. Fortunately, important progress has been made
in recent years toward the development of a method to carry
out these investigations.33–36 The truncated polynomial ex-
pansion method �TPEM�, has a CPU time that scales linearly
with N and, as a consequence, it is a promising technique for
these investigations. Previous studies have shown that the
JH=� one-orbital model with and without quenched disorder
can be accurately studied.33–37 However, the method has not
been tested yet under some of the more severe circumstances
needed for a realistic study, namely, the use of two active
orbitals per site �i .e. the doubly degenerate eg sector of Mn
ions� and/or with a finite Hund coupling.

It is important to remark that there are at least two other
independent methods that have been proposed to improve on
the exact diagonalization of the fermionic sector approach.
�1� The hybrid Monte Carlo technique of Alonso et al.,38

inspired in lattice gauge theory, that allows for calculations
on lattices up to 163 sites in the limit of JH=� and for one
orbital,39,40 and with a linear with N increase in effort. �2�
The method of Kumar and Majumdar41 �and references
therein� that has been already applied to a variety of models
reaching 32�32 clusters for one orbital and at JH=�. The
scaling of this method is N3. Our choice of the TPEM is
motivated by the perception that a linear with N cost is
needed to handle the anticipated percolative physics that
emerges when quenched disorder and phase competition oc-
curs. Also it seems easier to implement than method �1�
where auxiliary fields are needed. Nevertheless, this is not a
critique on methods �1� and �2�: they should be strongly
pursued as well. Only future work can decide which method
is the best for the type of problems described here.

There are many similarities between the TPEM and meth-
ods already used for band structure calculations. Even
though the matrix diagonalization is O�N3�, integrated quan-
tities such as the total energy depend only upon the density
or the density matrix, without the need to compute eigen-
states. The density matrix becomes a sparse matrix that leads
to a large decrease in complexity. As in the case of the
TPEM, most band-structure O�N� methods find a basis set
that is localized and truncate the range of the interaction
while ensuring accuracy and convergence.

For instance, the locally self-consistent multiple scattering
�LSMS� method42 is an all-electron real space approach to
electronic structure calculations within the framework of the
local density approximation �LDA� for large unit cells con-
sisting of hundreds or thousands of atoms. Within this
method the computational effort required to treat an N-atom
large cell grows linearly with N, rather than with N3 as in
conventional LDA electronic structure methods. Density ma-
trix methods have also been proposed.43,44 Another class of
methods use localized Wannier orbitals45–48 which improve

on the Car-Parrinello approach.49 An efficient tight-binding
method in molecular dynamics is discussed in Ref. 50. Re-
views on this topic can be found in Refs. 51 and 52.

It is the main purpose of this paper to present a systematic
study of the TPEM applied to models that are widely be-
lieved to be realistic for manganite investigations, in the
clean limit. The conclusions indicate that the technique
works properly for these investigations, contributing toward
the ultimate goal of conducting a fully realistic simulation of
the two-orbital double-exchange model including quenched
disorder. The present results include a detailed analysis of
both metallic and insulating phases on lattices as large as
48�48 sites, about 20 times larger in number of sites than it
is possible to handle with exact diagonalization techniques.
In addition, here it is discussed the existence of a huge mag-
netoresistance at low temperatures, in agreement with experi-
ments for �Nd1−ySmy�1/2Sr1/2MnO3.53 This phenomenon was
theoretically studied before by Aliaga et al.26 as well, al-
though on much smaller systems. Nevertheless, the conclu-
sions are similar: this somewhat exotic “low temperature”
CMR phenomenon can be understood as a natural conse-
quence of the existence of a first-order metal-insulator tran-
sition in the phase diagram and, thus, a clean-limit simula-
tion is sufficient for this purpose. However, in our
investigations it is also confirmed that these clean limit simu-
lations are not able to generate the standard CMR effect
above the Curie temperature using states that are homoge-
neous. Quenched disorder or strain fields are likely important
for this purpose, which will be the subject of near future
efforts.

The organization of the paper is simple. The theoretical
aspects of the TPEM are briefly reviewed in Sec. II. The
systematics of the TPEM in the case of the one-orbital
model, with emphasis on the dependence with parameters
and size effects is discussed in Sec. III. We also present
physical results related with large magnetoresistance effects
found at low temperatures, in large clusters. Then, in Sec. IV,
the emphasis shifts to the two orbitals model, with an analo-
gous study of TPEM performance and effects of magnetic
fields. Conductances are evaluated for both models using the
TPEM and reasonable results are observed. Overall, it is con-
cluded that the TPEM is adequate for a frontal future attack
of the CMR phenomenon using realistic models and
quenched disorder.

II. REVIEW OF THE TPEM

For completeness, here a brief review of the TPEM is
presented following closely Ref. 37. Consider a model de-

fined by a general Hamiltonian Ĥ=�ij��ci�
† Hi�,j����cj�,

where the indices i and j denote a spatial index, while � and
� are internal degree�s� of freedom, e.g., spin and/or orbital.
As in the case of spin-fermion models, the Hamiltonian ma-
trix depends on the configuration of one or more classical
fields, represented by �. Although no explicit indices will be
used, the field�s� � are supposed to have a spatial depen-
dence. The partition function for this Hamiltonian is sche-

matically given by Z=�d��n�n �exp�−�Ĥ���+��N̂� �n	,
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where �n	 are the eigenvectors of the one-electron sector, and
the � integral denotes the integration over all the classical
fields. Here �=1/ �kBT� is the inverse temperature. The num-

ber of particles �operator N̂� is adjusted via the chemical
potential �.

The procedure to calculate observables �energy, density,
action, etc.� is the following. First, an arbitrary configuration
of classical fields � is selected as a starting point. The Bolt-
zmann weight or action of that configuration S��� is calcu-
lated by diagonalizing the one-electron sector. Then, a small
local change of the field configuration is proposed, so that
the new configuration is denoted by �� and its action is
recalculated to obtain the difference in action �S=S����
−S���. Finally, this new configuration is accepted or rejected
based on a Monte Carlo algorithm, such as Metropolis or
heat bath, and the cycle starts again. In summary, in the
standard algorithm �that we will denote here as DIAG� the
observables are calculated using an exact diagonalization of
the one-electron sector for every classical field configuration,
and Monte Carlo integration for those classical fields.6–8

The TPEM replaces the diagonalization for a polynomial
expansion as discussed below �details can be found in Refs.
33–35�. It will be assumed that the Hamiltonian H��� is
“normalized,” which simply implies a rescaling in such a
way that the normalized Hamiltonian has eigenvalues �v�
�−1,1�. Simple observables can be divided in two categories:
�i� those that do not depend directly on fermionic operators,
e.g., the magnetization, susceptibility and classical spin-spin
correlations in the double exchange model and �ii� those for
which a function F�x� exists such that they can be written as
A���=�−1

1 F�x�D�� ,x�dx, where D�� ,��=�	
�����−�	�, and
�	 are the eigenvalues of H���, i.e., D�� ,x� is the density of
states of the system.

For category �i�, the calculation is straightforward and
simply involves the average over Monte Carlo configura-
tions. Category �ii� includes the effective action or general-
ized Boltzmann weight and this quantity is particularly im-
portant because it is calculated at every MC step to integrate
the classical fields. Therefore, we first briefly review how to
deal with this type of observables. As Furukawa et al.
showed, it is convenient to expand the function F�x� in terms
of Chebyshev polynomials 54,55 in the following way: F�x�
=�m=0

� fmTm�x�, where Tm�x� is the mth Chebyshev polyno-
mial evaluated at x. Let �m=2−
m,0. The coefficients fm are
calculated with the formula fm=�−1

1 �mF�x�Tm�x� / ��
1−x2�.
The moments of the density of states are defined by

�m��� � �
	=1

Ndim

�	�Tm�H�����		 , �1�

where Ndim is the dimension of the one-electron sector. Then,
the observable corresponding to the function F�x� can be
calculated using

A��� = �
m

fm�m��� . �2�

In practice, the sum in Eq. �2� is performed up to a certain
cutoff value M, without appreciable loss in accuracy as de-

scribed in Refs. 33 and 34, and as extensively tested in the
main sections of this paper for realistic manganite Hamilto-
nians. The calculation of �m is carried out recursively using
�	 ;m	=Tm�H� �		=2H �	 ;m−1	− �	 ;m−2	. These same vec-
tors are used to calculate the moments. The process involves
a sparse matrix-vector product, e.g., in Tm�H� �		, yielding a
cost of O�N2� for each configuration, i.e., O�N3� for each
Monte Carlo step. This represents an improvement in a factor
N compared with DIAG.

In addition, an extra improvement of the method de-
scribed thus far has been proposed35 based on two trunca-
tions: �i� of the sparse matrix-vector product and �ii� of the
difference in action for local Monte Carlo updates. The re-
sulting algorithm has an expected CPU time growing linearly
with N. The first truncation is possible because of the form of
the vectors �	 ;m	. Indeed, for m=0 these are simply basis
vectors that can be chosen with only one nonzero compo-
nent. The m=1 vector is obtained by applying T1�H�=H to
the basis vector. Since H is sparse �consider, for instance, a
nearest-neighbor hopping�, the vector �	 ;m=1	 will have
nonzero elements only in the vicinity of 	. For general m, the
nonzero elements will propagate in what resembles a diffu-
sion process. Note that we only have to keep track of the
nonzero indices to perform the sparse matrix-vector product.
Since we are only discarding null terms, this truncation does
not introduce any approximation. It is possible to go a step
further and discard not only zero elements but elements
smaller than a certain threshold denoted by �pr. In this case,
the results are approximate, but the exact results are recov-
ered in the limit �pr→0. In this paper, the dependence of
results with various values for this cutoff �and the one de-
scribed below� is discussed.

The second truncation involves the difference in effective
action, which is calculated very frequently in the Monte
Carlo integration procedure. The function corresponding to
the effective action for a configuration � is defined by
FS�x�=−ln�1+exp�−��x−���
 and S��� admits an expansion
as in Eq. �2�, with coefficients fm

S corresponding to FS�x�. In
practice, only the difference in action, �S=S����−S��� has
to be computed for every change of classical fields. Since
this operation requires calculating two sets of moments, for
� and ��, the authors of Ref. 35 have also developed a
truncation procedure for this trace operation controlled by a
small parameter �tr. This truncation is based on the observa-
tion that if � and �� differ only in very few sites �as is the
case with local Monte Carlo updates�, then the corresponding
moments will differ only for certain indices allowing for a
significant reduction of the computational effort. Again, the
exact results are recovered for �tr→0, so this approximation
is controllable.

Another key advantage of the TPEM is that it can be
parallelized, because the calculation of the moments in Eq.
�1� for each basis ket �		 is independent. Thus, the basis can
be partitioned in such a way that each processor calculates
the moments corresponding to a portion of the basis. It is
important to remark that the data to be moved between dif-
ferent nodes are small compared to calculations in each
node: communication among nodes is mainly done here to
add up all the moments. The possibility of parallelizing this

ONE- AND TWO-BAND MODELS FOR COLOSSAL¼ PHYSICAL REVIEW B 73, 224430 �2006�

224430-3



algorithm can be contrasted with the conventional method
where a matrix diagonalization is performed at every Monte
Carlo step; in that case the calculations must be serial be-
cause it is difficult to make an efficient parallelization of the
matrix diagonalization.

III. RESULTS FOR THE ONE BAND MODEL

A. Definition

After introducing the computational method, we will now
focus on its performance starting with the one-orbital model
for manganites. Historically, this model was among the first
proposed for Mn oxides and it is still widely used, although
it does not incorporate the two orbitals eg of relevance in Mn
ions. This more involved two-orbital version will be studied
in the next section.

The one orbital Hamiltonian used in this study is given by

H1b = − t �
�ij	,�

�ci,�
† cj,� + H.c.� − JH �

i,�,�
ci,�

† ��,�ci,�

+ JAF�
�ij	

Si · S j , �3�

where ci,�
† creates an electron at site i with spin �, � are the

Pauli spin matrices, Si is the total spin of the t2g electrons
�assumed to be localized and classical�, �ij	 indicates sum-
ming over nearest neighbor sites, t is the nearest neighbor
hopping amplitude for the movement of electrons �t also sets
the energy unit�, JH
0 is the Hund coupling, and JAF
0 is
the antiferromagnetic coupling between the localized spins.
The study carried out in this manuscript is based on the
clean limit, namely, the couplings that appear in the Hamil-
tonian do not have a site index, which would be necessary if
quenched disorder is incorporated. The study of realistic
models including disorder will be carried out in a future
investigation, since it represents an order of magnitude extra
effort due to the average over disorder configurations.

Here and in the rest of the paper, spatial indices will al-
ways be denoted without arrows or bold letters indepen-
dently of the dimension. Also the notation i+ j is meant to
represent the lattice site given by the vectorial sum of the
vectors corresponding to i and j, respectively.

B. TPEM performance

1. Test of the TPEM in small systems

As explained before, the TPEM has three controlling pa-
rameters M, �pr, and �tr. In the limit when the first parameter
runs to infinity, and the other two to zero, the exact results
are recovered. For the TPEM to be useful, accurate results
must be obtained for values for these parameters that allow
for a realistic computational study. In Fig. 1�a�, the depen-
dence of the zero-momentum spin structure factor, of rel-
evance for ferromagnetism, is shown vs temperature, using a
122 cluster and the values of JH and JAF indicated. In this
case, it is expected that a FM state will form at low tempera-
tures, as observed numerically. Results for many values of M
are shown, at fixed values of �pr and �tr. Clearly, M =10 only
captures the low and high temperature limits, but it is not

accurate near the critical temperature. The results for M
=20 are much better, but still there is a visible discrepancy
near the region where S�0,0� changes the fastest. However,
for M =30 and 40, fairly accurate results are obtained. In Fig.
1�c�, it is shown that even the spin correlations at the largest
distances are accurately reproduced with M�40 terms in the
expansion. The issue of error bars shown in the figure will be
discussed in Sec. III B 3.

In Fig. 1�b�, similar results are presented but now for the
spin-structure-factor corresponding to the “flux” phase—
nearest-neighbor spins at 90° forming a staggered arrange-
ment of nonzero plaquette fluxes. This phase appears at n
=0.5 with increasing JAF, as reported in previous investiga-
tions. 10,56,57 In this case, M =10 and even 20 produces re-
sults dramatically different from those of DIAG. However,
for M =30 discrepancies are observed only in a range of tem-
peratures near the critical transition, with low and high tem-
peratures under control. Finally, M =40 leads to very accu-
rate results, as in case �a�. Even the spin correlations are
under well control for this number of terms in the expansion

FIG. 1. �Color online� Dependence of the TPEM algorithm re-
sults on the number of terms M in the expansion. Shown are the
spin structure factors at the momenta characteristic of �a� the FM
state and �b� the flux state, normalized to 1 and 0.5, respectively, for
the perfect states. Results are obtained on a 12�12 lattice and they
are compared with the numbers gathered using the exact diagonal-
ization algorithm, all calculated at density �n	=0.5. �a�, �c� corre-
spond to JAF=0.0 and �b�, �d� to JAF=0.1. Measurements were
taken every 10 steps of a MC run of 2000 total iterations, after
discarding 2000 steps for thermalization. A random starting con-
figuration is used for each T. In �a�, at the most difficult tempera-
ture, T=0.06, where critical fluctuations are strong, the result shown
was confirmed using several different starting configurations, in-
cluding ordered ones. The average S�0,0� obtained by this proce-
dure was very similar among the several starts. The shown error
bars at this temperature and M =30 mainly arise from the expected
critical fluctuations. More details are provided in Sec. III B 3. In
�b�, a good convergence at T=0.04 is only achieved by using 40
moments with �pr=10−7 and �tr=10−5 and the result is shown with
an orange star just below the exact result. In �c�, the TPEM param-
eters used are M =30, �pr=10−5, and �tr=10−3, except at T�0.06,
where the convergence is achieved by using 40 moments with �pr

=10−7 and �tr=10−5. In �d�, all the results shown were obtained with
M =30, �pr=10−5, and �tr=10−3, and solid lines represent the DIAG
results while the dashed lines are the TPEM results.

ŞEN et al. PHYSICAL REVIEW B 73, 224430 �2006�

224430-4



�see Fig. 1�d��. The range M �30–40 appears systematically
in our investigations, and it is expected to provide safe val-
ues of M for studies of the type of spin-fermion models
under investigation in manganites.

In Fig. 2, a study of the dependence of results with �pr and
�tr is presented, working at M =30. From Fig. 2, clearly there
are large �’s that lead to unphysical results, but with decreas-
ing values an accurate evaluation of observables is reached.
In this and other investigations, values such as �pr=10−5 and
�tr=10−3 are generally found to be accurate, with only a few
exceptions.

2. Dependence of results on lattice sizes

An approximate method that depends on some param-
eters, such as in the case of the TPEM, is practical only if by
fixing those parameters on small systems, their values still
provide accurate numbers as the lattice sizes increase. A
qualitative way to carry out this test is to perform the studies
on large clusters and see that all the trends and approximate
numbers remain close to those known to be accurately ob-
tained on small systems, or expected from other techniques
or physical argumentations. Figures 3�a� and 3�b� supports
the notion that TPEM indeed behaves properly in this re-
spect, namely the range of M and �’s identified in the previ-
ous subsection are sufficient to produce qualitatively similar
results even when the number of sites grows by a factor 10.
In �a�, the expected size dependence corresponding to a sec-
ond order FM transition is found. For a 40�40 cluster, the
Curie temperature appears located at T�0.07. In �b�, the size
dependence is almost negligible. The transition is far sharper
for the paramagnetic-flux transition, as already noticed in
Fig. 2�b�. This is an intriguing feature that will be investi-
gated in future work: while the first-order low-temperature
metal-insulator transitions are clear and well established in
realistic models for manganites, the presence of first-order
transitions between ordered and disordered phases varying

temperature is far less obvious, and TPEM studies on large
lattices can properly address this issue. For our current pur-
poses, here it is sufficient to state that the TPEM appears to
behave properly with increasing lattice sizes, both in metallic
and insulating regimes.

At this point a clarification is important. In principle, two-
dimensional systems should not show true critical tempera-
tures due to the Mermin-Wagner theorem. However, it is
well known that in systems where the Mermin-Wagner theo-
rem applies, such as the two-dimensional NN Heisenberg
model, the antiferromagnetic spin correlation length expo-
nentially diverges with decreasing temperature. An exponen-
tial behavior, defines via the exponent a temperature scale T*

below which the correlations are much larger than any lattice
size that can be practically studied numerically. This may
seem to be a problem, but it is not: very large correlation
lengths also render the system very susceptible to small per-
turbations. In particular, we have shown that tiny deviations
from the fully symmetric Heisenberg model, such as intro-
ducing Ising anisotropies, stabilize T* into a true critical tem-
perature. In fact, simulations performed with Ising anisotro-
pies typically reveal no important differences with the results
obtained with fully vector models on finite systems. Small
couplings in the third direction play a similar role. As a con-
sequence, for all practical purposes the critical behavior ob-
served in the present studies describes properly the expected
physics of manganite models, which are always embedded in
three dimensional environments, and that have small
anisotropies. A final note on this subject: The CE phase of
manganites, notation introduced long ago by Wollan and
Koeller,58 can show a finite-temperature transition even in
two dimensions, since the order parameter for charge order
can be Ising type �see Fig. 4�.

FIG. 2. �Color online� � dependence of the TPEM algorithm
results �M =30� for a 12�12 lattice, compared with the exact
�DIAG� results. Both are obtained at density �n	=0.5, using �a�
JAF=0.0 and �b� JAF=0.1. Measurements were taken at every 10
steps of a 2000 MC steps total run, after 2000 steps for thermaliza-
tion. In �b�, the convergence at T=0.04 is achieved by using 40
moments with �pr=10−7 and �tr=10−5, as shown with an orange star
just below the exact result. The starting configurations and error bar
convention is as in Fig. 1.

FIG. 3. �Color online� Lattice size dependence of the TPEM
algorithm results for the lattices and parameters shown, working at
density �n	=0.5 and using �a� JAF=0.0 and �b� JAF=0.1. Measure-
ments were taken at every 10 steps of a 2000 MC total steps run,
after discarding 2000 MC steps for thermalization. For the 20
�20 lattice and larger, the starting configuration used was a perfect
FM state. In �b�, the starting configuration used is a random one
except at T=0.04 where the starting configuration is chosen to be a
perfect flux state for faster convergence. In addition, for lattices
except 40�40, the convergence at T=0.04 is achieved by using 40
moments with �pr=10−7 and �tr=10−5, while for other temperatures
M =30 with �pr=10−5 and �tr=10−3 were sufficient. For the lattice
40�40, M =40 with �pr=10−6 and �tr=10−4 were used for all
temperatures.
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The CPU time needed to obtain the results shown in this
subsection follows the expected trends reported in previous
investigations �see Table I�. In particular, the TPEM time
needed for a 32�32 cluster is comparable to the DIAG time
on a 12�12 cluster, a very encouraging result. Of course,
this comparison will be even more favorable to the TPEM
with increasing number of CPU’s for parallelization.

3. Analysis of error bars

In this subsection, a detailed analysis of the error bars that
arise in the TPEM simulation will be carried out. We focus
here on only one set of parameters, and temperatures below
and right at criticality. However, investigations for other set
of couplings have revealed that the conclusions are similar,
and the order of magnitude of the error bars comparable. As
a consequence, rather than complicating all the figures in the
manuscript, we simply here discuss in detail a couple of
cases and, then, throughout the paper similar error bars must
be assumed in the ordered and critical regions unless other-
wise stated.

The error bars are calculated using the data blocking
technique,59 where data is averaged over each of the L
=N /K blocks, where N is the total number of measurements
and K is the block size. The size K of the blocks have been
varied from 1 to 1000 and the asymptotic value of the stan-
dard deviation is calculated �e.g., inset of Fig. 5�a�� for each
K, setting an upper limit for the error bars. The calculated
autocorrelation times have also been observed to coincide

with the value of the block size K for which the standard
deviation � starts to flatten.

In Fig. 5, the MC time evolutions of the magnetization
and S�0,0� for the parameters corresponding to Fig. 1�a� are
presented. Shown are results using both ordered and disor-
dered starting configurations. In the case of the ordered start
and low temperature T=0.01, the fluctuations are clearly
very small in both quantities. If the starting configuration is
random, there is a rapid thermalization and the results con-
verge to the ordered state as, of course, it must occur. The
error bars are very small. This is characteristic of all the
studies reported in this paper in the low temperature regime
below critical temperatures.

As expected, much stronger fluctuations occur in the case
of T=0.06, which corresponds to the critical regime in Fig.
1�a�. While results are independent of the starting configura-
tion, the fluctuations are large. For a magnetization �or other
order parameters� normalized to one, the errors are typically
about 0.1 for the 12�12 cluster here studied. Another simple
procedure to judge the magnitude of error bars is to analyze
the results obtained at similar temperatures, starting with dif-
ferent random configurations. This is the case of Fig. 1, for
instance. The fluctuations from temperature to temperature
are related to the error bars of the simulation.

C. Phase diagram

Using the TPEM, the phase diagram of the one-orbital
model for manganites at �n	�0.5 was obtained �see Fig. 6�.
The transition between the FM and Flux states at low tem-
peratures is of first order. In fact, in the absence of quenched
disorder the zero temperature result can be obtained by using
the perfect classical spin configurations for both the FM and
flux states, and calculating their energy vs JAF �not shown�.

FIG. 4. �Color online� Spin structure factor vs T for JAF=0.05
using the lattice sizes and parameters shown in the figure.

TABLE I. Comparison of the CPU times for the algorithms
indicated, using an Intel Pentium 4 �clock speed 3.06 Gz� computer.
Shown are results for different square lattices of size L�L, assum-
ing 2000 MC steps for thermalization, and 2000 MC steps for mea-
surements �taken every 10 MC steps�. Since the TPEM can be par-
allelized, some results were obtained using more than one CPU, as
indicated.

L Algorithm No. of CPUs CPU time �h�

12 DIAG 1 19.48

12 TPEM 2 5.46

20 TPEM 2 18.08

32 TPEM 8 25.92

FIG. 5. �Color online� Analysis of MC error bars �standard
deviation� with TPEM for parameters M =30, �pr=10−5, and �tr

=10−3. �a� and �b� results using a FM starting configuration; �c� and
�d� using a PM starting configuration. �a� T=0.01, �mag	=0.934
with �mag=0.003 and �S�0,0�	=0.872 with �S�0,0�=0.005. �b� T
=0.06, �mag	=0.603 with �mag=0.007 and �S�0,0�	=0.371 with
�S�0,0�=0.008. �c� T=0.01, �mag	=0.940 with �mag=0.001 and
�S�0,0�	=0.883 with �S�0,0�=0.002. �d� T=0.06, �mag	=0.616 with
�mag=0.006 and �S�0,0�	=0.388 with �S�0,0�=0.007. The approxi-
mate number of independent Monte Carlo steps, obtained with the
data-blocking technique �Ref. 59�, is 100 for case �d�.
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By this procedure the zero-temperature critical JAF was
found to be close to 0.03. Raising the temperature, this tran-
sition line is not vertical, but has a tilting. Figure 6 shows
that the estimated critical temperatures do not present severe
size effects, and the TPEM can be comfortably used at least
up to 40�40 clusters. The presence of a first-order transition
in the competition between the FM and flux phases is in
qualitative agreement with several previous investigations
that have shown similar trends both for the one- and two-
orbital models, at any electronic density.6–8 This transition is
expected to be severely affected by the influence of
quenched disorder, and this issue will be investigated in the
near future. The critical temperatures in Fig. 6 were esti-
mated from the behavior of the spin structure factors at the
two momenta of relevance for the FM and Flux phases, as
shown in Fig. 7.

D. Density of states

In this section, it is shown that the density-of-states
�DOS� can be reproduced properly by the TPEM. This is
nontrivial, since it may be suspected that a method based on
an expansion of the DOS may have problems in an insulating
phase due to the rapid changes in the DOS near the gap.60 To
our knowledge, this is the first time that the TPEM has been
applied to an insulator. The discussion in this subsection
shows that the technique works satisfactorily.

In general, the density-of-states for a configuration of
classical fields � is given by

N���� = �
�


��� − ��� , �4�

with ��= ��−b� /a, and where a and b are the parameters
that normalize the Hamiltonian in such a way that the new
eigenvalues are in the interval �−1,1�. These constants are
given by a= �Emax−Emin� /2 and b= �Emax+Emin� /2, where
Emax and Emin are the maximum and minimum eigenvalues
of the Hamiltonian. Then, following the discussion of Sec. II,
the corresponding function F�x� for the density-of-states in
the expression

A��� = �
−1

1

F�x�D��,x�dx �5�

is the 
 function

F�x� = 
��� − x� . �6�

In the expansion F�x�=�m=0
� fmTm�x�, by using the expression

for the coefficients fm=�−1
1 �mF�x�T�x� / ��
1−x2�, the final

result for the density-of-states becomes61

N���� =
�m

�mTm�����m���

�
1 − ��2
. �7�

This sum is truncated to a certain cutoff M and such an
abrupt truncation results in unwanted Gibbs oscillations, as
shown, e.g., in Fig. 8 for M =30. This problem may be
avoided by multiplying the moments by damping factors if
needed.62

The results for the density-of-states of the flux phase are
shown in Fig. 8. Clearly, even at M =30 there is a very good
agreement between the DOS calculated exactly and with
TPEM �with the exception of the in-gap Gibbs oscillations�.
Increasing M further, even this effect disappears. Using a
40�40 lattice, the results are almost the same as those ob-
served on the smaller system. It is concluded that the TPEM
can produce the DOS of insulating states accurately, and the
method can be used to study phase competition between met-
als and insulators.

E. Conductances: Comparison TPEM vs DIAG, and results
with increasing lattice sizes

To compare theory with experiments, it is crucial to
evaluate the conductance of the cluster under study. Its tem-
perature and magnetic field dependence will clarify whether

FIG. 6. �Color online� Phase diagram at �n	�0.5, varying tem-
perature and JAF. Results are shown for a 12�12 lattice using both
DIAG and TPEM techniques, and for larger lattices using TPEM, as
indicated. The tilting of the first-order low-temperature FM-flux line
emerges from a combination of finite-T MC simulation results and
the T=0 energy comparison between FM and flux phases. Its intui-
tive origin remains to be clarified in future work.

FIG. 7. �Color online� Examples of the criteria used in the cal-
culation of the critical temperatures in Fig. 6. �a� and �c�: Spin
structure factors at the momenta of relevance vs temperatures, for
many values of JAF, as indicated, using the DIAG technique on a
12�12 cluster. �b� and �d�: Same as in �a� and �c� except the tech-
nique used here is the TPEM. Shown are some of the results for
12�12 and 20�20, as indicated in the figure.
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the double-exchange models for manganites contain the es-
sence of the CMR phenomenon. The conductance calculation
here follows the steps previously extensively discussed by
Vergés et al., and it basically relies on the Landauer formal-
ism that links conductance with transmission. We refer the
readers to original references for more details �see, for in-
stance, Ref. 63, and reference therein�. In Fig. 9, the conduc-
tance and its inverse �resistance� are shown as a function of
temperature for the model on a 12�12 cluster that can be
solved both with DIAG and TPEM. The agreement between
the results obtained with both techniques is excellent, at the

two values of JAF shown �one in the FM and the other in the
flux phase�. Thus, the conductance calculation does not
present an obstacle in the use of the TPEM.

With increasing lattice size, the TPEM conductance be-
haves smoothly and the finite-size effects are small �see Fig.
10�, with the only exception of the insulating flux phase re-
gime at low temperatures where the 12�12 cluster results
appear appreciably different from those on larger systems.
Considering the small value of the conductance in this insu-
lating regime and the subsequent convergence of the flux-
phase resistance between the 20�20 and 32�32 clusters,
this appears to be only a minor issue.

F. Influence of magnetic fields in the clean limit and partial
conclusions

As discussed in the Introduction, it is important to inves-
tigate if the models studied here, in the clean limit, present a
large magnetoresistance effect. Previous studies by Aliaga et
al.26 on 4�4 clusters, suggested that the “low temperature”
large magnetoresistance experimentally observed in some
manganites53 can be explained by double-exchange models
in the clean limit. This result is important and deserves to be
confirmed using larger clusters. Here, the case of the one-
orbital model is analyzed, with results shown in Fig. 11 �two
orbitals will be studied later in this paper�. The value of JAF
was chosen to be on the insulating side �flux phase� of the
phase diagram Fig. 6, but close to the first-order transition
separating the metal from the insulator. The application of
“small” magnetic fields favors the FM state over the flux
state and that manifests as a sharp transition from the metal
to the insulator, for values of the magnetic field that appear
abnormally small in the natural units of the problem. Thus,
this model presents a huge negative magnetoresistance, an
encouraging result that shows theory is in the right track to
understand manganites. The effect shown in Fig. 11 is caused
by the proximity in energy of two states with quite different
properties, i.e., there is a hidden small energy scale in the
problem.

FIG. 8. �Color online� �a� Density-of-states calculated for a per-
fect Flux state using both the DIAG and TPEM methods for a
lattice of size 12�12. In order to get the DOS accurately, even
removing the Gibbs oscillations, one needs larger number of mo-
ments than what is usually required for other observables. �b�
Monte Carlo results for the density-of-states obtained from simula-
tions performed on a 40�40 lattice. In this case the last configu-
ration of the MC run has been used to calculate the density-of-states
at T=0.02.

FIG. 9. �a� Conductance and �b� resistance �1/conductance� vs
temperature for a 12�12 lattice, calculated with both DIAG and
TPEM algorithms showing that the results agree. The couplings
used are JAF=0.0 and JAF=0.1 as indicated, and the density is �n	
=0.5. The convergence at T=0.04 is achieved by using 40 moments
with �pr=10−7 and �tr=10−5, as discussed in previous figures
captions.

FIG. 10. �Color online� �a� Conductance and �b� resistance �1/
conductance� vs temperature calculated with the TPEM algorithm at
JAF=0.0 and JAF=0.1, �n	=0.5, and for the cluster sizes shown in
the figure. The figure shows that the conductance does not suffer
from strong size effects. The convergence at T=0.04 for the 12
�12 lattice was achieved by using 40 moments with �pr=10−7 and
�tr=10−5, as discussed elsewhere.
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However, note that the standard large finite-temperature
magnetoresistance traditionally studied in Mn oxides cannot
be understood with clean limit models, as shown in Fig. 11:
the zero magnetic-field resistivity does not have the large
peak near Curie temperatures characteristic of CMR manga-
nites. Future work using the TPEM will analyze whether this
more traditional CMR effect can be obtained including
quenched disorder.

Overall, it can be safely concluded that the study of the
one-orbital model with the TPEM has proven that the tech-
nique works properly, and that the FM vs flux competition
occurs via a first-order metal-insulator transition. This re-
gime is ideal for the analysis of the influence of quenched
disorder in future calculations.

IV. RESULTS FOR THE TWO-BAND MODEL

A. Definition

In this effort, the two-orbital model for manganites was
also investigated using the TPEM. The two orbitals arise
from the eg orbitals that are active at the Mn ions in Mn
oxides, as extensively discussed before.6–8 The overall con-
clusion of this section is that the TPEM is also a good ap-
proximation to carry out computational studies, conclusion
similar to that reached for only one active orbital. The
Hamiltonian for this model is6–8

H2b = �
�,��,i,�

t���
� S��i,�i,�i+�,�i+��ci,�

† ci+�,��

+ ��
i

�Q1i�i + Q2i�xi + Q3i�zi� + �
i

�
�=1

�=3

D�Q�i
2 , �8�

where the factor that renormalizes the hopping in the JH=�
limit is

S��i,�i,� j,� j� = cos��i

2
�cos�� j

2
� + sin��i

2
�sin�� j

2
�e−i��i−�j�.

�9�

The parameters t���
� are the hopping amplitudes between the

orbitals � and �� in the direction �. In this paper, we restrict
ourselves to two dimensions, such that taa

x =−
3tab
x =−
3tba

x

=3tbb
x =1, and taa

y =
3tab
y =
3tba

y =3tbb
y =1. Q1i, Q2i, and Q3i

are normal modes of vibration that can be expressed in terms
of the oxygen coordinate ui,� as

Q1i =
1

3

��ui,z − ui−z,z� + �ui,x − ui−x,x� + �ui,y − ui−y,y�� ,

Q2i =
1

2

�ui,x − ui−x,x� ,

Q3i =
2

6

�ui,z − ui−z,z� −
1

6

�ui,x − ui−x,x�

−
1

6

�ui,y − ui−y,y� .

Also, �xi=cia
† cib+cib

† cia, �zi=cia
† cia−cib

† cib, and �i=cia
† cia

+cib
† cib. The constant � is the electron-phonon coupling re-

lated to the Jahn-Teller distortion of the MnO6
octahedron.1,3–8,15 Regarding the phononic stiffness, and in
units of taa

x =1, the D� parameters are D1=1 and D2=D3
=0.5, as discussed in previous literature.26 The rest of the
notation is standard. In our effort here, the emphasis is on the
case ��0 believed to be of sufficient relevance to deserve a
special study since it already contains26 a competition be-
tween FM metallic and CE insulating states at �n	=0.5.
Thus, this is an excellent testing ground for the TPEM, par-
ticularly having in mind the next challenge involving a
TPEM study in the presence of quenched disorder. However,
briefly some results at nonzero � will also be shown.

B. TPEM performance

1. Test of the TPEM in small systems

As in the case of the one-orbital model, the analysis starts
here by comparing DIAG and TPEM results on small sys-
tems. Figure 12 contains the magnetization �in absolute
value, and coming from the classical spins� vs temperature.
The results in �a� and �c� were obtained at JAF=0.0, �=0,
and �n	=0.5, a regime known to develop ferromagnetism at
low temperatures.26 Indeed, both methods show a nonzero
value for the magnetization. The dependence with the TPEM

FIG. 11. �Color online� �a� Conductance vs temperature for lat-
tices of sizes 20�20 and 32�32, with and without magnetic fields.
�b� Resistance vs temperature calculated by taking the inverse of the
conductance in �a�. Close to the first-order transition in the phase
diagram, a small magnetic field can destabilize the insulating flux
state into a metallic FM state. For each temperature, 1000 thermal-
ization and 2000 measurements MC steps were used, with actual
measurements taken at every 10 steps.
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parameters indicates that a M of approximately 30 or higher
is sufficient to get accurate results. This is a conclusion that
also appears in �b� where the case of a CE state is studied,
which is stabilized with increasing JAF. Regarding the other
TPEM parameters, �d� shows that �pr=10−5, as used for the
one-orbital case, leads to accurate results. Overall, it seems
that the same set of parameters deduced from the one-orbital
model investigations can also be used for two orbitals, an
interesting simplifying result.

2. Dependence of results on lattice sizes

Figure 13 illustrates the dependence of results on lattice
sizes. The systematic behavior is similar to that observed in
the case of the one-orbital model at the same density �n	
=0.5. In �a� results for the magnetization vs temperature in-
dicate the existence of a FM state at low temperatures, as
well as small finite-size effects when the 20�20 and 32
�32 clusters are compared. Even less pronounced size ef-
fects are found in the CE regime, increasing JAF as shown in
�b�. There is no indication that the TPEM deteriorates with
increasing lattice size, providing hope that this method will
be strong enough to handle the introduction of quenched
disorder in future studies.

C. Phase diagram

1. Results without phonons

To further test the TPEM, the phase diagram of the two-
orbital model at �=0 and �n	=0.5 was obtained. Also at very
low temperature, the energy was found as a function of JAF.

The results are in Fig. 14. Part �a� shows an excellent agree-
ment among the several lattice sizes studied here. The abrupt
change in the slope of the curve near JAF=0.15 indicates a
first-order transition, similar to that found in the one-orbital
case and in previous literature. In �b�, the full phase diagram
is obtained. There are clear qualitative similarities with the
results presented before by Aliaga et al. using a 4�4
cluster.26 In particular, the curve defining the CE phase at
low temperature has a positive slope rather than being verti-
cal as in other cases. The fact that the TPEM gives results in

FIG. 12. �Color online� Convergence of the structure factors,
varying the parameters of the TPEM algorithm. �a� Magnetization
�M � =
S�0,0� vs T / t at JAF=0.0 using the DIAG method and
TPEM with �pr=10−5, �tr=10−6, and the values of M indicated. �b�
Order parameter associated with the CE phase �OCE � =
S�� ,0� vs
T / t at JAF=0.2 using the DIAG method and TPEM with �pr=10−5,
�tr=10−6, and the values of M indicated. �c� Magnetization �M �
=
S�0,0� vs T / t at JAF=0.0 using the DIAG method and TPEM
with M =20 and �tr=10−6, varying �pr=� as indicated. �d� Order
parameter of the CE phase �OCE � =
S�� ,0� vs T / t at JAF=0.2 using
the DIAG method and TPEM with M =20, �tr=10−6, varying �pr

=� as indicated. All calculations were done on a 12�12 lattice,
using 1000 Monte Carlo steps for thermalization and 1000 for
measurements.

FIG. 13. �Color online� Lattice size dependence of the square
root of the structure factors at the momenta characteristic of �a� a
FM state, k= �0,0� and JAF=0.0, and �b� a CE phase, k= �� ,0� and
JAF=0.2. Results were obtained with the TPEM with M =20, �pr

=10−5, �tr=10−6. In addition, for �a� the DIAG method was also
used on a 8�8 lattice as indicated. In the simulation, 1000 MC
steps were used for thermalizations and 1000 steps for
measurements.

FIG. 14. �Color online� �a� Total energy vs JAF at low tempera-
ture �T=0.01t� for different lattices as indicated. For the 12�12
lattice the DIAG method was used, while for the others the TPEM
was employed with M =20, �pr=10−5, �tr=10−6. In the simulation,
1000 MC steps were used for thermalizations and 1000 steps for
measurements. �b� Phase diagram of Hamiltonian Eq. �8� varying
temperature and JAF ��=0�. The three magnetically different re-
gions: FM, PM, and CE are indicated. The phase diagram was cal-
culated for different lattices as shown. For 12�12 the DIAG
method was used and for the others the TPEM with M =20, �pr

=10−5, �tr=10−6. The critical temperatures were obtained from the
calculation of structure factors, as shown in Fig. 13.
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good agreement with DIAG but on substantially larger sys-
tems is very encouraging and establishes this technique as a
key method for a frontal attack to the CMR problem using
realistic models and quenched disorder.

For completeness, CPU times for the case of the two-
orbital model are provided in Table II. The CPU time per site
does not change dramatically with N, close to the expected
theoretical estimation for the TPEM. Clearly, lattices well
beyond 32�32 can be handled with this technique.

2. Influence of phonons

As explained in the introduction, the general scenario pro-
posed for manganites does not depend on particular details of
the competing phases, but in the competition itself and on the
broad characteristics of these phases, such as their metallic
and insulating properties.6–8 Thus, to the extent that the FM
metallic and CE insulating phases are found in competition,
the particular value of the electron-phonon coupling � is not
of crucial relevance. The CE vs FM competition occurs ap-
proximately in the range of � between 0 and 1 �beyond this
number, the FM metallic phase transforms into a charge or-
dered insulator�. We believe that � is small in practice, since
recent experiments are not finding evidence of a robust
charge checkerboard. For example, see Ref. 64 for another
estimation67,68 of �. In addition, theoretical studies have
shown that a large � renders the FM state also insulating.26

Nevertheless, to confirm that the results are not severely af-
fected by switching on �, in Fig. 15 the phase diagram for
��0.5 is presented on a lattice substantially larger than used
in previous investigations.26 Comparing Figs. 14 and 15,
clearly both cases lead to very similar phase diagrams. Since
removing the phononic degree of freedom speeds up the
simulations, these results suggest that the future effort in this
context could focus in the ��0 case and still expect to find
realistic conclusions. However, note that this issue is still
controversial, namely, the experimental existence of a FM
metallic phase in the phase diagram points toward a small �,
but there are several indications of a substantial Jahn-Teller
effect in the insulator, which arises from a large �
effect.7,27,65 Further theoretical and experimental work is
needed to clarify this aspect.

D. Density of states

As in the case of the one-orbital model, we also tested
whether the TPEM technique can reproduce the DOS of the

two-orbital model in the regime where the system is insulat-
ing �CE phase�. The results are in Fig. 16. Part �a� shows a
comparison between DIAG and TPEM on a 12�12 cluster.
The agreement is excellent for the case of M�100 �shown�,
and fairly acceptable for smaller values of M. For larger
lattices that can only be studied with TPEM �part �b��, the
results are also in good agreement with expectations. Then,
no problems have been detected in calculating the DOS us-
ing the TPEM technique in the regime where the model is in
an insulating state.

E. Conductances: Comparison TPEM vs DIAG, and results
for increasing lattice sizes

As in the case of the one-orbital model, the final test for
the two-orbital case is the calculation of the conductance.
Results are shown in Fig. 17. Even using clusters much

TABLE II. CPU Times of the TPEM in seconds per five Monte
Carlo steps for Hamiltonian Eq. �8� with JAF=0 and inverse tem-
perature �=50, and the lattices shown. The third column is the ratio
of CPU time per lattice site. The computer used was an AMD
Opteron�tm� 244, 1.8 GHz with 1 MB cache. The TPEM param-
eters were M =20, �pr=10−5, and �tr=10−6.

L�L CPU Time�s� CPU Time/N

12�12 122 0.85

20�20 376 0.94

24�24 564 0.98

32�32 1063 1.04

FIG. 15. Phase diagram of Hamiltonian �8� varying temperature
and JAF for �=0.5 and the harmonic parameters discussed in the
text, i.e., with the inclusion of phonons. The critical temperatures
were obtained from the calculation of structure factors on a 12
�12 lattice with the DIAG method. Note the similarity of this
phase diagram with the result obtained at �=0.0, suggesting that to
simulate the competition between FM metallic and CE insulating
regimes the presence of a robust electron-phonon coupling is not
necessary.

FIG. 16. �Color online� �a� DOS of a perfect CE phase �single
spin configuration� obtained on a 12�12 lattice calculated with the
DIAG method �solid black line� and with the TPEM �dashed red
line� using M =100. The chemical potential lies in the left gap �ar-
rows� indicating that the system is an insulator. �b� DOS of the
system with JAF=0.2 �CE-phase ground state� on a 20�20 lattice
calculated with the TPEM using M =100, as described in the text.
The location of the chemical potential is indicated by the vertical
dashed line.
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larger than can be handled with DIAG, the behavior of the
conductance is properly captured by TPEM. There are no
hidden subtleties involved in this estimation of transport
properties, opening the way toward many future applications
of this technique.

F. Influence of magnetic fields in the clean limit

Similarly as for the case of the one-orbital model, we
have also studied the influence of a magnetic field in the case
of the two-orbital model. The value of JAF was chosen to be
0.175, namely, on the CE side but close to the first-order
metal-insulator transition. As shown in Fig. 18, the applica-
tion of a relatively small field—in the natural units of the
problem—leads to a drastic change in the resistivity at low
temperatures. In this regime, the insulator is transformed into
a metal �negative magnetoresistance�. As remarked before,
this is in agreement with previous studies carried out by
Aliaga et al.,26 showing that the “low temperature” large

magnetoresistance materials53 can be understood by double-
exchange models in the clean limit. However, as in the case
of one-orbital models studied before, the finite-temperature
CMR effect in Mn oxides cannot be understood with clean
limit models, as shown in Fig. 18, since the zero magnetic-
field resistivity does not have the large peak characteristic of
manganites. Future work with TPEM will address this issue
including quenched disorder.

V. CONCLUSIONS

In this paper, it has been shown that the computationally
intensive exact-diagonalization algorithm for the study of
CMR-manganite models can in practice be replaced by the
truncated polynomial expansion method �TPEM� without
any substantial loss in accuracy. The DIAG, although being
exact, does not permit simulations of large clusters owing to
the fact that the computational cost grows with the 4th power
of the system size N. On the other hand, the TPEM algorithm
reduces the computational complexity to O�N�, thereby al-
lowing for simulations of larger systems.

For both the one- and two-orbital double exchange model
with interacting Mn spins, we have compared systematically
the results calculated with both the diagonalization method
and the TPEM algorithm. As the spin-spin coupling JAF is
varied, the one-orbital model reveals a low-temperature first-
order phase transition between conducting FM and insulating
flux states in the vicinity of JAF=0.045. For two orbitals, a
similar first-order transition separates FM metallic and CE
insulating phases. Our calculations presented here included a
systematic study of the performance of the TPEM algorithm
varying its parameters M, �pr, and �tr, already defined in the
introductory sections. It was shown that the results of the
TPEM algorithm converge to those of the DIAG algorithm
with increasing M, and for M �30 TPEM results are suffi-
ciently accurate to obtain phase diagrams with small error
bars. This number appears to be fairly stable under changes
in the model, couplings, and for different phases, and lattice
sizes. Also nothing indicates that working at density different
from 0.5, the focus of the current effort, will spoil the TPEM
performance. �However, it is advisable to be particularly cau-
tious near critical temperatures, where in some cases we
found the need to increase M to 40.� Similar systematic re-
sults were presented for the �’s. Overall, the general process
of fixing TPEM parameters on small systems by comparing
with DIAG and then using the same parameters on larger
lattices appears reliable, and this method will be applied to
other systems in the near future.

Parallelization of the TPEM algorithm makes it possible
to study large clusters. Taking advantage of this possibility,
in the absence of quenched disorder, we have made calcula-
tions on lattices of up to 40�40 sites even for the case of a
finite Hund coupling in the one-orbital model. But previous
calculations in the limit of JH=� used up to 8000 sites,66

thus even accounting for the factors of 2 involved in com-
paring finite and infinite JH there is still room for further
improvement. We have also checked that calculations of con-
ductances, crucial to predict transport properties, also can be
carried out smoothly with the TPEM, and in addition the size

FIG. 17. �Color online� Upper panel: Conductance vs tempera-
ture for JAF=0.0 �ferromagnet� and JAF=0.2 �CE phase�, different
lattices sizes and algorithms, as indicated. Lower panel: Logarithm
of the resistivity vs temperature for the same parameters as before.

FIG. 18. �Color online� Effect of a small magnetic field on the
resistivity of the CE phase, for couplings in the vicinity of the first
order transition metal insulator. Shown is the resistivity vs T at
JAF=0.175, �=0, on a 20�20 lattice for B=0.1t and without field
�B=0� for comparison. Note the large change in the resistivity at
low temperature, compatible with a colossal magnetoresistance. The
TPEM was used with M =30, �pr=10−5, and �tr=10−6. 1,000 Monte
Carlo steps were done for thermalization and an additional 100
more for measurements.
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effects are in general small. While obviously the increase in
lattice size allows for more accurate determinations of criti-
cal temperatures, even more importantly these large lattices
will be crucial for the next big step in large-scale manganite
simulations which is the introduction of quenched disorder.
This disorder is expected to lead to a percolativelike picture
that causes the CMR phenomenon. Any percolative effect
requires large systems, and having access to clusters substan-
tially larger than those studied with DIAG is a key necessary
condition to unveil the conceptual reason behind the CMR
phenomenon.

Interesting physical results were also here reported. This
includes the one-orbital phase diagram with a metal-insulator
transition. But the main result in this context is the presence
of an enormous magnetoresistance effect at low tempera-
tures, even in the clean limit studied here. This effect was
already anticipated by Aliaga et al. in their pioneering work
on this subject on small systems.26 The survival of the effect
on the large clusters reachable by the TPEM, as described in
this manuscript, shows that some forms of CMR found ex-
perimentally can already be accurately reproduced using re-
alistic models, providing further support that a theoretical
solution of the CMR puzzle is within reach. But for the most
common form of CMR in Mn oxides at temperatures close to
the Curie temperature, studies with quenched disorder will
likely be needed.

Summarizing, we here reported a successful implementa-
tion of the TPEM for the study of double-exchange-like
models for manganites. The technique has a CPU time that

grows linearly with the number of sites, and in addition it is
parallelizable. Thus, the main result is that a technique has
been identified and tested that can contribute to a frontal
attack of the most interesting problem in manganites: the
analysis of large magnetoresistance effects in the presence of
quenched disorder, when phases compete via a first-order
transition in the clean limit. This “holy grail” of simulations
will be the focus of our effort in the near future. It will
demand at least an order of magnitude more effort than in the
present manuscript, but this can be alleviated by increasing
the number of nodes available for the simulations and we are
already working on this aspect. The large-scale computa-
tional facilities at Oak Ridge National Laboratory will play a
key role in reaching this ambitious goal.
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