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Experiments on polarized fermion gases performed by trapping ultracold atoms in optical lattices allow
the study of an attractive Hubbard model for which the strength of the on-site interaction is tuned by
means of a Feshbach resonance. Using a well-known particle-hole transformation we discuss how results
obtained for this system can be reinterpreted in the context of a doped repulsive Hubbard model. In
particular, we show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state corresponds to the striped
state of the two-dimensional doped positive U Hubbard model. We then use the results of numerical
studies of the striped state to relate the periodicity of the FFLO state to the spin polarization. We also
comment on the relationship of the dx2�y2 superconducting phase of the doped 2D repulsive Hubbard
model to a d-wave spin density wave state for the attractive case.
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Using standing wave laser light fields and optical
Feshbach resonances, ultracold atomic gases can be used
to realize a variety of Hubbard-like models [1,2].
Technically, if one wants a strong interaction, it appears
easier to create an ultracold Fermi gas (e.g., 6Li) with an
attractive interaction and experiments on polarized fer-
mion gases with attractive interactions have been carried
out to look for exotic superfluid states [3–6].

One state of particular interest is the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state which arises from pair-
ing across the spin-split Fermi surface of a spin polarized
system [7,8]. In this state, the Cooper pairs have a finite
center of mass momentum leading to spatial oscillations of
the pair field order parameter and the spin polarization.
Here, making use of density-matrix-renormalization-group
(DMRG) results [9,10] for the doped, positive U Hubbard
model and a well-known particle-hole transformation [11–
14], we conclude that (1) if the FFLO state is to be the
ground state, it will more likely occur for jUj * 4t, where t
is the near-neighbor hopping, (2) in this regime the wave
vector characterizing the spatial structure of the FFLO
state is twice as large as the mean-field prediction, and
(3) an observation of the FFLO state would imply that the
low temperature phase of the positive U Hubbard model is
striped.

The Hamiltonian for a half-filled negative U Hubbard
model in an external Zeeman field, H, can be written as

 H � �t
X

hijis

�cyiscjs � c
y
jscis� �

U
2

X

i

�ni" � ni#�2

� h
X

i

�ni" � ni#�: (1)

Here t is a nearest-neighbor one-electron hopping, U is
positive so the on-site interaction is �Uni"ni#, and h �
g�0H=2. The operator cyis creates a fermion with spin s on

site i, the sum hiji is over nearest-neighbor sites of a square
lattice, and nis � cyiscis is the number operator. In the case
of the ultracold gases, a spin polarization p � �N" �
N#�=N is achieved by loading more atoms in the ‘‘up’’
pseudospin hyperfine state than in the ‘‘down’’ state.

In the mean-field FFLO state, the Cooper pairs have a
finite center of mass momentum which, for a two-
dimensional tight binding band structure, lies along the
(1,0) or the (1,1) direction depending upon the ratio of
jUj=t. For the case in which it lays along the (1,0) direc-
tion, the order parameter exhibits a one-dimensional oscil-
lation along the x direction

 ��‘x� � Rehc‘"c‘#i � ��0 cos�qx‘x�: (2)

Here we have chosen the phase so that ��0� is negative.
The spin polarization also varies in space with

 ns�‘x� � hn‘" � n‘#i � p�m0 cos�2qx‘x�: (3)

Here cos�qx‘x� and cos�2qx‘x� give the leading weak
coupling harmonic behavior. The spatial variation of
��‘x� and ns�‘x� are schematically illustrated in Fig. 1.
At stronger coupling, higher harmonics can enter giving a
more localized behavior.

Since the possible existence of an FFLO state was
originally proposed [7,8], there has been great interest in
determining whether it exists and exploring its properties.
In particular, with the possibility of observing such a state
in ultracold atomic gases, there have been a number of
theoretical calculations [15–21]. These calculations have
been based upon a mean-field description. Here we are
interested in the case of a two-dimensional half-filled
lattice gas where it is important to treat strong coupling
effects. One would like to know if the FFLO state survives
beyond the mean-field approximation, whether the stripes
run vertically (or horizontally) as in Eqs. (2) and (3) or
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diagonally, and whether the periodicity of the spatial varia-
tion which determines qx remains at its mean-field value.

The Hamiltonian for the negative U Hubbard model in a
Zeeman field can be transformed under a unitary trans-
formation to a doped positive U Hubbard model. This
transformation, introduced by Emery [11], has been a
staple in quantum Monte Carlo work where it was used
to show that the fermion sign problem is absent for the
half-filled Hubbard model with a near-neighbor hopping
[12]. It has also been used, as we will review, to provide a
map between the half-filled negativeU Hubbard model in a
Zeeman field and the doped positive U Hubbard model
[12–14,22]. Under this transformation we will see that the
FFLO state becomes the familiar striped, charge density,
and �-phase shifted antiferromagnetic state of the doped
positive U Hubbard model.

For a unitary transformation in which

 c‘" ! ��1�‘x�‘ydy‘" c‘# ! d‘# (4)

the Hamiltonian given in Eq. (1) becomes
 

H � �t
X

hijis

�dyisdjs � d
y
jsdis� �

U
2

X
�ni" � ni# � 1�2

��
X

i

�ni" � ni#� (5)

with � � �h. That is, the half-filled negative U Hubbard
model with spin polarization p is mapped into a positive U
Hubbard model with a site filling hni � 1� p. Under this
transformation Eq. (2) becomes

 ��1�‘x�‘yhMx�‘x; ‘y�i � ��0 cosqx‘x (6)

with Mx�‘� � �d
y
‘"d‘# � d

y
‘#d‘"�=2. The system has rota-

tional symmetry so that Eq. (6) implies that the staggered
spin order is modulated by cosqx‘x.

 mstag�‘x� �
��1�‘x�‘y

2
hn"�‘x; ‘y� � n#�‘x; ‘y�i

� ��0 cosqx‘x: (7)

Similarly, the spin polarization, Eq. (3), transforms to
the hole density giving

 h�‘x� � 1� hn�‘x; ‘y�i � p�m0 cos�2qx‘x�: (8)

Thus, under the unitary transformation Eq. (4), the FFLO
state maps to the striped state of the doped positive U
Hubbard model in which charged stripes separate
�-phase shifted antiferromagnetic regions.

Mean-field studies [13,23–28] of the doped, two-
dimensional positive U Hubbard model with a nearest-
neighbor hopping find that the domain walls run along
the x or y directions for jUj=t & 3:6. For values of 3:6 &

jUj=t & 8 the domain walls run diagonally and for jUj=t
greater than 8 the domain walls are found to be unstable
with respect to the formation of magnetic polarons [29].
The mean-field domain walls are found to contain one hole
per site along the wall and one says that the domain wall is
filled with holes. This means that the spacing of the vertical
(or horizontal) charged domain walls is equal to p�1,
giving the mean-field result

 qx � �p (9)

for such walls. A schematic illustration of the mean-field
results for p � 0:125 is shown in Fig. 1(a).

Now these are mean-field results and at larger values of
U one is dealing with a strongly correlated system. Thus
one might wonder whether the FFLO state remains the
ground state. This is a question that has also played a
central role in the high Tc cuprate problem. There one
would like to know if the ground state of the doped
Hubbard model is striped or possibly a dx2�y2 supercon-
ductor, and what is the nature of the interplay between
stripes and pairing [30]. Present DMRG calculations on 6-
leg Hubbard ladders find a striped ground state [9,10],
while dynamic cluster Monte Carlo calculations [31] on
periodic lattices find evidence of a dx2�y2 superconducting
state. Whether the difference of lattice aspect ratios and
boundary conditions or subtle numerical biases are respon-
sible for this disagreement is not known. It does, however,
appear that these two states are very close in energy. Here
we will use the DMRG results for the striped state to
discuss the nature of the FFLO state at moderate and large
values of jUj and then conclude by noting what would
happen for the dx2�y2 state.

The DMRG calculations have been carried out on 6-leg
doped positive U Hubbard ladders. Periodic boundary
conditions have been imposed in the 6-leg direction and
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FIG. 1 (color online). Schematic results for the spatial varia-
tion of the s-wave order parameter ��‘x� (solid line) and the spin
polarization ns�‘x� (dashed line) in an FFLO state with p �
0:125 (dotted line). (a) The mean-field result with a period for
��‘x� of 2=p � 16 and (b) with a period 1=p � 8 expected from
DMRG calculations on long stripes.
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open boundary conditions are used in the long x direction.
In Ref. [10], the results have been extrapolated to infinite
length ladders. These numerical results find that the ground
state exhibits the striped structure like that shown in Fig. 2
when jUj * 4t. The figure shows the hole density

 h�‘x� �
1
6

X6

‘y�1

�1� hn�‘x; ‘y�i�; (10)

and the staggered spin density

 mstag�‘x� �
1
6

X6

‘y�1

��1�‘x�‘yhn"�‘x; ‘y� � n#�‘x; ‘y�i (11)

versus ‘x. For this doping, extrapolated DMRG results [10]
show that the ground state is striped for U=t * 3. For a 6-
leg tube, the stripes are found to contain 4 holes (2=3 filled
stripes) so that the charge stripe spacing is 2=�3p� � 7 with
hni � 1� p.

Calculations on an 8-leg t� J ladder find that the stripes
are half filled and there is evidence that this is the preferred
filling [32]. These calculations show that the holes that
make up the stripe exhibit short range pairing correlations
[33] in which the sign of the singlet pair field associated
with two sites connected by a hopping perpendicular to the
stripe is opposite to that of the case in which the hopping is
parallel to the stripe. These d-wave-like pairing correla-
tions of the holes in the stripe are not taken into account in
the mean-field calculations which find filled stripes. For
half-filled stripes, the spacing between the charged stripes
is 1=2p so that the numerical calculations on the longer
stripes imply that qx for the FFLO state will be twice that

found in the mean-field calculations.

 qx � 2�p: (12)

In this case, the FFLO state will have half the spatial
period of the mean-field solution, as illustrated in Fig. 1(b).

Here we have made use of DMRG calculations which
were carried out on systems with periodic boundary con-
ditions in one direction and open boundary conditions in
the other. In cold atoms experiments, one is generally
dealing with an underlying optical lattice in a slowly
varying trap potential which acts as a spatially dependent
chemical potential. This leads to soft boundaries and the
simultaneous coexistence of spatially separated phases.
The details of this depend upon the total filling as well as
the curvature of the confining trap potential [34]. In prin-
ciple, the DMRG method is well suited to treating such soft
boundaries but here we have focused our discussion on the
idealized case of a two-dimensional lattice which has one
fermion per site with an attractive Feshbach tuned interac-
tion and a spin polarization p. We have shown that the
FFLO state of a 2D half-filled attractive spin polarized
Hubbard model is a unitary transform of the striped state
of the doped repulsive Hubbard model. Thus an experi-
mental observation of the FFLO state in the above men-
tioned cold atom setup would imply that the 2D doped
repulsive Hubbard model is striped. Note that we have not
shown that the striped state is the ground state of the two-
dimensional doped repulsive U Hubbard model. This re-
mains an open question. We have simply shown that if the
striped state were the ground state then this would imply
that the FFLO state would be found in the optical lattice
experiments and that its periodicity would be given by
Eq. (12). We believe that the factor of 2 increase in qx
represents an important change from the mean-field result
and reflects the tendency towards dx2�y2 pairing [33].
Recent experiments also suggest that local pairing corre-
lations are present on the cuprate stripes [35].

Finding evidence for an FFLO state in a cold attractive
spin polarized Fermi lattice gas would provide evidence
that the low temperature phase of the doped positive U
Hubbard model is striped. If, on the other hand, the dx2�y2

superconducting state describes the low temperature phase
of the repulsive Hubbard model, then the transformation,
Eq. (4), tells us that the cold atom system will exhibit a
‘‘d-spin density wave’’ ground state characterized by an
order parameter

 

X

k

�coskx � cosky�hc
y
k�Q"ck#i (13)

with Q � ��;��. Thus experiments on half-filled, spin
polarized cold fermi lattice gases with attractive on site
interactions and the search for the FFLO state have im-
portant implications for the properties of the doped
repulsive U Hubbard model. Likewise, our present under-
standing of the repulsive Hubbard model can provide
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FIG. 2 (color online). This figure shows DMRG results (G.
Hager et al. [10] ) for the hole h�‘x� (dashed red line) and the
staggered spin mstag�‘x� (solid blue line) densities along the leg
direction for a 21� 6 Hubbard ladder with 12 holes and U=t �
12. As discussed in the text, h�‘x� corresponds to the spin
polarization ns�‘x� and mstag�‘x� corresponds to the s-wave
pairfield order parameter ��‘x� of the FFLO state.

PRL 98, 216402 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
25 MAY 2007

216402-3



information relevant to experiments on the spin polarized
attractive Fermi gas.
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