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We study the sudden expansion of strongly correlated fermions in a one-dimensional lattice, utilizing the
time-dependent density-matrix renormalization group method. Our focus is on the behavior of experimental
observables such as the density, the momentum distribution function, and the density and spin structure factors.
As our main result, we show that correlations in the transient regime can be accurately described by equilib-
rium reference systems. In addition, we find that the expansion from a Mott insulator produces distinctive
peaks in the momentum distribution function at k� �� /2, accompanied by the onset of power-law
correlations.
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I. INTRODUCTION

The nonequilibrium properties of strongly correlated elec-
tron systems are a challenging subject in need of a better
understanding. While experimental studies in this area face
difficulties in the solid state context, ultracold quantum gases
provide a controlled way to address this difficult issue.
For this reason, recent experiments employing out-of-
equilibrium cold atom gases in optical lattices, which allows
the realization of model Hamiltonians for strongly correlated
particles �for a review, see, e.g., Ref. �1��, have attracted
considerable attention �2–4�.

Among the fundamental questions recently addressed in
these experiments is the issue of thermalization in isolated
quantum systems �2,5–14�. In the transient regime, quantum
quenches have been shown to induce a collapse and revival
of coherence properties �3�, and transport measurements in
different lattice systems have unveiled the intriguing conse-
quences of strong correlations �4�. The important effects of
interactions have been observed in the expansion of bosons
in one-dimensional �1D� lattices as well �15–19�. In the ex-
pansion from a Mott insulator �MI� state, quasicondensates at
finite momenta emerge �15�, while in the hard-core regime,
the expansion from a superfluid state leads to the dynamical
fermionization of the bosonic momentum distribution func-
tion �MDF� �16�. The latter is a generic feature of the expan-
sion of harmonically trapped hard-core bosons in the absence
of a lattice �20�. In addition, it has been shown in Ref. �21�
that independently of the initial interaction strength, a freely
expanding Lieb-Liniger gas always enters a strongly corre-
lated �hard-core-like� regime. The expansion dynamics of
strongly correlated fermions, which due to the spin degree of
freedom is expected to be richer, has not yet been addressed,
and it is the objective of this work.

Concretely, we study the expansion of two-component in-
teracting fermions in a 1D lattice. The ground-state physics
of these systems is characterized by a Tomonaga-Luttinger

�TL� state with power-law decaying correlations at any in-
commensurate filling. At half-filling, a charge gap opens and
the system exhibits quasi-long-range antiferromagnetic cor-
relations �22�. Here, we wish to elucidate how the initial
state of the system, being either MI or TL, affects the expan-
sion process. Identifying distinctive features for the MI is of
much interest to experimentalists in the search for the fermi-
onic MI state. However, our main objective is to shed light
on the relation, if any, between these out-of-equilibrium sys-
tems and their equilibrium counterparts. As the main result
of this work, we provide evidence that correlations measured
in nonequilibrium are quantitatively described by appropri-
ately chosen equilibrium reference systems.

The outline of the paper is the following. First, we de-
scribe the model and the numerical procedure in Sec. II.
Section III contains our results on the time evolution of den-
sity profiles and the momentum distribution function for both
TL and MI initial states. In Sec. IV, we investigate the pos-
sible relation to equilibrium systems, and we present a com-
parative analysis of spin and charge correlation functions.
We also comment on the validity of our findings in other
models, such as the Hubbard chain with a nearest-neighbor
repulsion, which renders the model nonintegrable. We con-
clude with a summary of our results contained in Sec. V.

II. MODEL AND NUMERICAL METHOD

The nonequilibrium dynamics is analyzed using the adap-
tive time-dependent density-matrix renormalization group
method �tDMRG� �23�. We consider the 1D Hubbard model
with nearest-neighbor hopping t and an on-site Coulomb re-
pulsion U as follows:

H0 = − t�
l=1

N−1

�cl+1,�
† cl,� + H . c.� + U�

l=1

N

nl,↑nl,↓. �1�

cl,�
† �cl,�� is a fermion creation �annihilation� operator acting

on site l, with �pseudo�spin index �= ↑ ,↓, nl,�=cl,�
† cl,� is the
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corresponding density operator, and we define nl=��nl,�. N
denotes the number of sites, a is the lattice constant, and
open boundary conditions are imposed. We prepare an initial
state with a filling ninit that is nonvanishing in only a portion
of the system by applying a confining box potential Hconf
=�l=1

N �lnl. Hence, we have H=H0+Hconf, with �l=106t for l
�” �l0 , l1� and �l=0 otherwise. At time �=0, we turn off Hconf.
� is given in units of 1 / t; we set � to unity.

In our tDMRG runs we use a third-order Trotter-Suzuki
time-evolution scheme with a time step of ��=0.005. The
discarded weight during the time evolution is kept below
10−8. To simulate the longest time scales possible on a given
system size before the particles are reflected at the bound-
aries, we select an asymmetric setup and, hence, particles can
only expand into one direction. We have checked that the
same overall picture is observed in symmetric setups �see
also Ref. �15��.

III. MOMENTUM DISTRIBUTION FUNCTION

We first discuss the properties of the MDF nk, computed
from nk= �1 /N��l,m,�exp�−ik�l−m���lm

� , where �lm
�

= �cl,�
† cm,�� is the one-particle density matrix. In Fig. 1�a�, we

show the evolution of nk �main panel� and the density �nl�
�inset� for an initial MI state. The main panel reveals a pe-
culiar behavior of nk: as the Mott insulator melts, a peak
develops at a finite momentum kp. We further find that, for U
larger than the bandwidth W=4t, kp closely approaches � /2.
This behavior resembles that of hard- and soft-core bosons
�15�. Qualitatively, we understand this in terms of an energy
argument: in the MI state with U	W, the total kinetic en-
ergy is close to zero. Hence, particles emitted into an empty
lattice have a small average kinetic energy corresponding to
a momentum � /2. As the Fermi statistics prohibits quasicon-
densation into a single momentum state, nk becomes a broad
function around kp�� /2.

While the initial MI state is characterized by an exponen-
tial decay of one-particle correlations, i.e., 	�lm

� 	
exp�−	l
−m	 /
�, 
=const, we find that during the expansion, the sys-
tem develops power-law correlations. In the inset of Fig.
1�b�, we compare the 	�lm

� 	 of a MI in equilibrium with the
correlations that emerge during its expansion, measured
within the moving cloud. The inset reveals the weak decay of
correlations during the expansion, consistent with a power
law. One may associate the dynamical emergence of this
power law with a metallization of the moving cloud, which,
after the melting of the MI, starts behaving as an inhomoge-
neous metal. As of now, our numerical analysis is restricted
to a small number of particles and time scales of �
15 only,
which prevents us from extracting, e.g., exponents of the
power laws. Note, though, that in the case of free fermions
expanding from an insulating state with ninit=1, i.e., a state
with no off-diagonal correlations, the emergence of power
laws has been established for a large number of particles and
hence over substantially larger distances than in the present
work �24�.

In the main panel of Fig. 1�b�, we show the evolution of
the MDF starting from a TL state with ninit�1. In this case,
the initial state has a well-defined Fermi momentum and a
power-law decay of correlations �22�. Such decay is pre-
served during the expansion. Moreover, nk also exhibits a
peak, but at a momentum kp�� /2 �kp increases as ninit→1�.
Another property of this peak, distinguishing it from the
peak formed after the melting of the MI, is that it exhibits a
much sharper edge at the large momentum side, reminiscent
of a Fermi edge.

From the previous analysis, we conclude that if nk could
be experimentally studied during the expansion in the
strongly correlated regime, then the emergence of peaks at
k= �� /2 in the fermionic MDF would serve to identify the
presence of a Mott insulator in the initial state. The experi-
mental challenge is to independently control the trapping po-
tential and the lattice �25–27�. This has been achieved in the
experimental study of disordered ultracold Bose gases in
both 1D optical lattices �26� and homogeneous 1D systems
�27�.

At this point we would like to emphasize that the physics
of our expanding system is different from the one found in
theoretical studies of strongly correlated systems in 1D lat-
tices undergoing a relaxation following a quantum quench
�5,9,10�. In the latter, correlations have been found to decay
faster than with a power law �sometimes clearly exponen-
tially� �5,7,9,10�, while in our moving clouds we find power-
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FIG. 1. �Color online� Expansion from a �a� MI �ninit=1; main
panel: MDF; inset: density�; �b� TL �ninit=0.6�; both at U=8t and
plotted at times �=0,4 ,8. Note that at ��8 and before the right
boundary is reached, the MDF exhibits only small changes. Dotted
line in �b�: MDF of a reference system �see the text in Sec. IV A for
details� with �nl�ref,�= �nl��=8��. Inset in �b�: Decay of one-particle
correlations during the expansion of the MI. The �=0 curve is for a
N=50 system at half-filling. The dotted vertical lines in �a� and �b�
denote k=� /2.
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law decaying correlations �inset of Fig. 1�b��. In addition,
after the relaxation to a steady state, one can ask the question
of what statistical ensemble may best describe physical ob-
servables, but here we are solely concerned with the transient
regime, i.e., a regime in which statistical ensembles do not
provide us with insights into the behavior of physical
observables.

IV. GROUND-STATE REFERENCE SYSTEMS

A. Construction of reference systems

Our results thus far have singled out a noticeable property
of these systems during their expansion: independently of the
initial ground state, power laws are observed in the nonequi-
librium dynamics. In 1D systems in equilibrium, power-law
correlations are only seen in the ground state, as finite tem-
peratures introduce a cutoff at large distances, followed by
an exponential decay �22�. Hence, one may wonder whether
a system out of equilibrium can in some way resemble the
ground state of a system in equilibrium. A natural choice for
such a reference state is the ground state of a system that has
exactly the same density distribution as the time evolving
state, i.e.,

�nl�ref,� = �nl���� , �2�

for all sites l. Hence, a reference system has to be determined
at each given time. We construct such reference states by
self-consistently computing a set of on-site energies �l in

Href = H0 + �
l=1

N

�lnl, �3�

with H0 from Eq. �1� such that at a desired time, the density
profile �nl���� is reproduced, while keeping t and U fixed.
Once the density has converged within an error of


n� = �
l

	�nl���� − �nl�ref,�	��
l

�nl���� � 10−3, �4�

we compare quantities of interest in both systems.

B. Spin and charge structure factor

We now turn to the comparative analysis of correlation
functions. We compute the spin-spin �Sk� and density-density
�Nk� structure factors, which are the Fourier transforms of the
spin-spin �Slm= �Sl

zSm
z �� and density-density �Nlm= �nlnm�

− �nl��nm�� correlations, respectively. The spin operator is de-
fined as Sl

z= �nl,↑−nl,↓� /2. In equilibrium and for a homoge-
neous system, Sk peaks at 2kF while Nk exhibits a kink at 4kF
�22�, where kF=�n /2 is the Fermi momentum. Consistently,
for the two cases ninit=1 and ninit=0.6 shown in Figs. 2�a�
and 2�c�, respectively, Sk��=0� �dotted lines� peaks at k=�
and k=�0.6, while Nk in the case of ninit=0.6 has a weak
kink at k=2�0.6 �dotted line in Fig. 2�d��. During the expan-
sion, the peak in Sk shifts to smaller momenta and the maxi-
mum is less sharp, as shown in Figs. 2�a� and 2�c� �solid
lines�. Qualitatively, we understand this behavior in terms of
the decrease of the average density during the expansion into
the initially empty lattice, giving rise to a shift of the 2kF

peak in Sk and a broadening due to the inhomogeneity. Fur-
ther, we propose an operational definition of a Fermi-
momentum kF

� in the expanding clouds by taking the position
of the peak in Sk, yielding 2kF

� . This supports the use of the
term “metallization” for the process that fermions escaping
from a MI undergo.

The density correlation Nk does not show any particular
features during the time evolution, as the kink is washed out
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FIG. 2. �Color online� Time evolution �solid lines� of ��a�,�c��
Sk and ��b�,�d�� Nk for the expansion with ��a�,�b�� ninit=1 at
times �=0, 1.0, 2.5, 4.5, 8.0; and ��c�,�d��: ninit=0.6 at times
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tities, Sk and Nk, for reference systems �see the text for details� are
included �circles�. Inset in �d�: density profile at time �=3.
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due to the inhomogeneity. Nk increases monotonously with
time, reflecting an increase of the overall charge fluctuations,
due to the closing of the charge gap as the MI melts.

Our most remarkable finding, and thus the key result of
this work, is the excellent agreement seen in Fig. 2 for Sk and
Nk between the expanding cloud—a genuine nonequilibrium
situation—and the inhomogeneous reference systems, which
are in their ground state �circles in Fig. 2�. We are therefore
led to conclude that, during the expansion, spin and charge
correlations out of equilibrium are, to a very good approxi-
mation, the same functionals of the density as the ones in
equilibrium systems in the ground state.

C. Time evolution of kinetic and potential energy

Intuitively, we expect that our way of preparing the refer-
ence systems must yield properties similar to those of the
moving clouds on short time scales. However, the agreement
between the clouds and the equilibrium systems exists both
at short and long times, and is thus preserved during the
expansion into the empty lattice. A noticeable difference ex-
ists between nk of the moving clouds and nk of the corre-
sponding reference systems. As discussed before, nk of the
expanding cloud has a finite-momentum maximum, which is
also present in the symmetric expansion, while nk of the
reference system in its ground state is symmetric around k
=0 �see the dotted line in Fig. 1�b��. Hence, observables
related to nk cannot be accounted for with this procedure.

Our previous findings on the spin and density structure
factors may seem puzzling: at any given time, the sum of the
kinetic energy Tkin and the interaction energy Eint of the time-
evolving state is much higher than the energy of the refer-
ence system, which, having the same density profile, is in its
ground state. This difference grows with time. In the case of
ninit=0.6 and U=8t, we have E0=Tkin+Eint=−6.86t, which of
course is a constant in time. At �=8, this splits into Tkin=
−t�l,��cl+1,�

† cl,�+H.c.�=−6.97t and Eint=U�l�nl,↑nl,↓�=0.11t.
In contrast, for the reference system, we find Tkin

ref =−10.93t,
and Eint

ref=0.18t, adding up to E0
ref=−10.75t. Thus, the main

difference is due to the kinetic energies.
We argue that both systems can be related by a Galilean

transformation and, thus, understand why their structure fac-
tors are similar. This means that the difference between the
kinetic energies Tkin and Tkin

ref is mainly due to the average
momentum of the moving cloud �k0=�kknk /�knk�, i.e., that
Tkin

ref �Tkin
Gal, the latter being the kinetic energy of the particles

in a reference frame moving with the cloud. To prove this,
we first notice that, using the MDF, the kinetic energy can be
estimated as

Tkin = �
k

nk�k
0, �5�

where �k
0=−2t cos k is the dispersion relation in the nonin-

teracting case. This assumption leads to Tkin�−6.97t and
Tkin

ref �−10.93t, as estimates for the kinetic energy of the ex-
panding and reference systems at �=8 �ninit=0.6, U=8t�,
respectively. Both values are very close to the exact results
presented before. We then compute Tkin

Gal=�knk�k−k0

0

=−10.15t�Tkin
ref at �=8, which corroborates our interpreta-

tion: the energy difference is mostly due to the finite momen-
tum of the cloud, and not due to contributions of the internal
kinetic or interaction energy. This picture is further supported
by Fig. 3 that contains the time evolution for Tkin, Eint, Tkin

ref ,
and Tkin

Gal for the parameters discussed in this section.

D. Breakdown of the ground-state
reference-system description

It is next important to identify conditions for a breakdown
of the reference-system description. To this end, we study the
relative difference between the time-dependent and the ref-
erence systems’ density structure factors,


Nk,� = �
k

	Nk��� − Nk,�
ref	��

k

Nk��� . �6�

The corresponding errors in Sk are smaller than those in Nk,
and we thus concentrate on the latter. Let us start with the
initial TL. We consider two cases: first, ninit�1 in a box trap
�see Fig. 2�d��. Second, as such a setup is more realistic to
account for experiments, we follow the evolution of fermions
escaping from a harmonic trap Vtrap�l�l�2nl. From the results
displayed in Fig. 4�a�, our key observation is that 
Nk,�
�0.02 remains very small in both cases. Hence, for an initial
TL state and for both Nk and Sk, the description given by the
equilibrium systems is very good up to the largest times
simulated.

We next turn to the case of an initial MI region, and
present results in Fig. 4�b� for U=8t ,20t ,�. The U=� case
is treated with exact diagonalization, after mapping the
charge sector of our two-component fermion system to spin-
less fermions �22�. A behavior similar to the TL case is found
at times ��5, with 
Nk,��0.04. However, for times after the
melting of the MI region ���5, see the inset in Fig. 4�b��, a
substantial increase of 
Nk,� becomes evident, as shown in
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FIG. 3. �Color online� Time evolution of �a� the kinetic energy
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initial TL state with U=8t, ninit=0.6 �dashed lines�, and the corre-
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Fig. 4�b�. Thus, for the MI expansion, reference systems
work well only up to the point at which the Mott insulator
totally melts.

This deviation of the time-dependent data from the refer-
ence systems is associated to the appearance of particular
coherence properties in the portion left behind by the moving
cloud after the melting of the MI, a feature that is not cap-
tured by the reference systems. To substantiate this interpre-
tation, we present results for the decay of Nij in the U=�
limit in Fig. 5. In that limit, we are able to exactly treat
arbitrary time scales for both a large number of particles and
a large system size. The data displayed in Fig. 5 are for 500

spinless fermions expanding from a MI region into a lattice
of 2000 sites.

In Fig. 5, we measure the density-density correlations at a
time �=600, at which the initial Fock state has already com-
pletely melted. Figure 5�d� shows the density profile at this
time and from that plot, we see that at time �=600, i�705
separates the front of fast particles from slower ones, as in-
dicated by the vertical dashed line in the figure. Panels �a�
and �b� show 	Nij	 for i� j, and j=20 and j=740, respec-
tively, i.e., measured from behind and from inside the mov-
ing front �Fig. 5�d��. While in the latter case, clearly a unique
power-law decay of 	Nij	 is observed, the former case is more
involved. There, the envelope of the correlator also decays
according to 	Nij	=�	i− j	�, yet for i�705 and i�705, a dif-
ferent prefactor � is found. These are the two regions in Fig.
5�a� indicated by the arrows. The exponent �=2K is univer-
sal and expected to be �=2 since the Luttinger parameter K
of spinless fermions is K=1, but the prefactor—in the
ground state—is essentially a function of the average density,
or the Fermi momentum, respectively �22�. The density-
density correlations therefore exhibit a distinctly different
behavior comparing the moving front of fast particles �i
�705� and those left behind �i�705�. It is exactly this step-
like feature, i.e., the sudden change in the prefactor of the
power law followed by 	Nij	, that is not captured by the ref-
erence systems. This is revealed in Fig. 5�c�, which shows
the 	Nij

ref	 as measured in the reference system constructed for
time �=600, for both j=20 and j=740. The plot includes the
fits to 	Nij	 from panels �a� and �b� �dotted-dashed lines�.
While for j=740, 	Nij	 is well described by the reference
systems, 	Nij

ref	 with j=20 does not show the steplike feature
observed in the moving cloud, as the reference systems fail
to account for the separation of particles moving at different
velocities.

For this reasoning to apply, it is important to realize that
such a separation of velocities as reflected in the two prefac-
tors to the power-law decay is not observed in the expansion
from a TL state. There, a power law with a single pair of
exponent and prefactor governs the decay of one-particle and
density-density correlations �16�.

E. Nonintegrable systems

Beyond the case of the Hubbard model Eq. �1�, the ques-
tion arises whether nonstationary states of other model
Hamiltonians may as well be described by ground-state ref-
erence systems. Conceptually, one may wonder whether in-
tegrability plays a role or not.

While a full account of these interesting issues is beyond
the scope of the present work, we wish to at least comment
on one additional model, the extended Hubbard model. In
addition to the terms given in Eq. �1�, this model incorpo-
rates a nearest-neighbor repulsion H2 as follows:

H2 = V�
l=1

N−1

nlnl+1. �7�

The nearest-neighbor interaction both renders the system
nonintegrable and induces additional phases at half-filling.
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but a different prefactor �. �b� The same as in �a�, but for j=740
�solid line�. Note that we plot correlations for i� j only. �c�
Density-density correlations measured in the reference system for
�=600, with j=20 �solid line with squares� and j=740 �solid lines�.
The latter curve has been offset for clarity. The dashed-dotted lines
are the fits from panels �a� and �b�. �d� Density profile at time �
=600. Vertical, dashed lines in �a� and �d� mark i=705, separating
the regions with different prefactors in the power-law decay of 	Nij	
at the time �=600 considered in this plot.
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For V�U /2, the system is a Mott insulator, while a large V
drives the system into a charge-density-wave phase �28�.
Here we focus on the numerically less demanding case of the
expansion from an initial state with an incommensurate fill-
ing of ninit=0.6. We postpone the discussion of the MDF to a
future publication, but rather compute the spin and charge
structure factors for both the expanding system and the ref-
erence systems constructed according to the prescription of
Sec. IV A. The results for U=8t and V= t are collected in
Fig. 6, and we note that in this case, we consider the expan-
sion from a box trap only.

Our observation is that the reference systems still provide
a very good approximation to the time-dependent correla-
tions. Moreover, the agreement remains much better for the
spin structure factor than for the charge structure factor. Fu-
ture work will have to clarify whether the reference system
description breaks down as V is increased. In conclusion, we
find that the reference system description does not seem to
be crucially dependent on integrability, and we expect a simi-
lar picture to emerge in other models.

F. Discussion: Relation to density functional theory

Our main results have shown that starting from a Mott
insulator, the temporal evolution of spin and density correla-
tion functions are very accurately described by the ground
state of reference systems defined at each instant of time so
that they have the same density distribution as the time-
evolving system. Such a description deteriorates after the

Mott insulating region has totally melted. On the other hand,
for systems starting with densities ninit�1, the description
with reference systems remains valid up to the largest times
reached in our simulations. These results explicitly show that
the correlation functions studied here are functionals of the
density, a fact that is in accordance with density functional
theory �DFT� for time-dependent systems �29,30�.

DFT considers, both for the ground state and time-
dependent situations, this kind of Hamiltonian �29,30�:

H = Hkin + HCoulomb + Hext, �8�

i.e., one separates the Hamiltonian into kinetic energy, the
interaction energy due to Coulomb interactions, and an ex-
ternal potential. We should here remark that in our case, the
time-dependent external potential is discontinuous at time �
=0, as we use Hext=Hconf at time �=0 and Hext=0 for ��0.
Therefore, it does not strictly comply with the assumptions
needed to prove the Runge-Gross theorem �31�, i.e., the ex-
ternal potential needs to be analytical around �=0.

However, and most importantly, the reference systems ex-
plicitly provide the required functionals, namely, the correla-
tion functions in the respective ground states. This is, to our
opinion, a rather surprising and nontrivial fact that the cor-
relations of a genuinely nonstationary state can be quantita-
tively described by equilibrium systems. Moreover, since
they are in their ground state, this suggests that a minimum
principle is at work here. As shown in Sec. IV E, these con-
clusions are not restricted to the pure Hubbard model, i.e.,
they are not a consequence of integrability. Therefore, we
expect that they hold in general.

V. SUMMARY

In this work, we have identified several remarkable and
unexpected properties of fermions expanding into an empty
lattice. These include the emergence of coherence as well as
an accumulation of particles at momentum � /2 in the expan-
sion of particles coming from a MI region. In particular, we
have shown that correlation functions of expanding, interact-
ing fermions can be accurately described by equilibrium ref-
erence systems in their ground state. These results are ex-
pected to qualitatively carry over to other models as well,
and certainly also apply to the case of hard-core bosons.
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