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Multiorbital Hubbard model Hamiltonians for the undoped parent compounds of the Fe-pnictide supercon-
ductors are investigated here using mean-field techniques. For a realistic four-orbital model, our results show
the existence of an intermediate Hubbard U coupling regime where the mean-field ground state has a (r,0)
antiferromagnetic order, as in neutron-scattering experiments, while remaining metallic due to the phenomenon
of band overlaps. The angle-resolved photoemission intensity and Fermi surface of this magnetic and metallic
state are discussed. Other models are also investigated, including a two-orbital model where not only the
mean-field technique can be used but also the exact diagonalization in small clusters and the variational cluster
approximation in the bulk. The combined results of the three techniques point toward the existence of an
intermediate-coupling magnetic and metallic state in the two-orbital model, similar to the intermediate-
coupling mean-field state of the four-orbital model. We conclude that the state discussed here is compatible

with the experimentally known properties of the undoped Fe pnictides.
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I. INTRODUCTION

The discovery of superconductivity in the Fe pnictides has
opened an area of research that is attracting considerable
attention.!® In the early stages of these investigations, the
layered structure of the Fe-pnictide superconductors,'8 the
existence of a (7,0) antiferromagnetic (AFM)-ordered state
revealed by neutron scattering in the undoped limit,>! and
their large superconducting critical temperatures'-® moti-
vated discussions on a possible close relation between these
new Fe-based materials and the high-temperature cuprate su-
perconductors. However, it was clear from the initial inves-
tigations that there were substantial differences as well, for
example, the resistivity vs temperature curves of the parent
compounds'~® do not show the characteristic Mott gapped
behavior of, e.g., LaCuQOy,. In fact LaOFeAs behaves as a bad
metal or semiconductor!=8 but not as an insulator. Moreover,
the magnetic moment in the (7,0) AFM-ordered state of
LaOFeAs is much smaller than expected.”!® Although fur-
ther neutron-scattering research has shown that the magnetic
order parameters are larger in other Fe pnictides,!! their val-
ues are still below those anticipated from band-structure
calculations'>~'® or from the large Hubbard U limit of model
Hamiltonians!” (unless couplings are in a spin frustrated
regime'®). In summary, the parent compounds of the Fe su-
perconductors behave in a manner different from the parent
compounds of the Cu-oxide superconductors because the
zero-temperature resistivity is finite and the magnetic order
is weak. However, the pnictides are also different from BCS
materials, where the normal state is a nonmagnetic metal
with low resistivity. Then, the Fe superconductors appear to
be in an intermediate regime of couplings, somewhere in
between, e.g., MgB, and the Cu-oxide superconductors.!%20
The “antiferromagnetic metallic” nature of LaOFeAs is
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clearly different from an AFM insulator or a nonmagnetic
metal. Further confirming the need to focus on the
intermediate-coupling regime for the Fe-pnictide parent
compounds, a pseudogap has been observed*'>* in the den-
sity of states (DOS) of the doped materials, which is differ-
ent from the featureless DOS of a good metal or the gapped
DOS of an insulator.”

Much of the current theoretical effort'71826-47 has focused
thus far on two well-defined limits. On one hand, band-
structure calculations have reported the existence of Fermi
pockets,'>'® which were confirmed by photoemission
experiments.*®* On the other hand, intuition on the physics
of the model Hamiltonians is often gained by investigating
the large U regime. Although results by some of us for a
two-orbital model using numerical techniques have already
shown that a small magnetic order can be accommodated at
intermediate couplings,'” this range of couplings is typically
the most difficult to handle using computer simulations, and
moreover, more bands are expected to be of relevance for a
better quantitative description of the Fe pnictides.

In this paper, multiband Hubbard models are investigated
using mean-field and numerical techniques. Our most impor-
tant result is the discovery of an intermediate Hubbard U
coupling regime where the ground state is an AFM metal.
More specifically, for U larger than a critical value U, the
(7,0) AFM order develops with continuity from zero. In
spite of a gap at particular momenta, the overall state re-
mains metallic (there is a nonzero weight at the chemical
potential in the DOS) due to the phenomenon of band over-
laps. Further increasing the coupling to U,,, a fully gapped
insulator is stabilized. Thus, the intermediate regime U,
<U<U, is simultaneously (i) magnetic with a small order
parameter and (ii) metallic. These properties are compatible
with our current knowledge of the Fe-pnictide parent com-
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pounds. Moreover, the DOS reveals the existence of a
pseudogap in this regime. Since experiments addressing the
pseudogap were mainly carried out in the doped case, our
calculations then predict that a similar pseudogap should be
observed in the undoped limit.

While these results are interesting, they were obtained
using mean-field approximations. For the realistic case of
four or five orbitals, it is difficult to obtain reliable numerical
results to confirm the mean-field predictions. However, for
the case of two orbitals, calculations can be carried out using
simultaneously the mean-field technique, which also reveals
an intermediate-coupling regime similar to that of the four-
and five-orbital models, together with the exact diagonaliza-
tion (ED) (Ref. 55) and variational cluster approximation
(VCA) (Refs. 56 and 57) methods used before.!” Below, it is
reported that the results using these computational methods
are compatible with those of the mean-field approximation,
providing confidence that the mean-field method may have
captured the essence of the problem. However, it is certainly
desirable that future investigations confirm our main results.

For completeness, here some related previous literature is
briefly mentioned. The band-overlap mechanism for an
insulator-to-metal transition has been extensively studied be-
fore using band-structure calculations in a variety of con-
texts, such as TICI and TIBr,’® solid hydrogen,* and bromine
under high pressure.®’ Closer to the present results, the exis-
tence of an intermediate Hubbard U regime with an AFM-
metallic state was previously discussed by Duffy and
Moreo®! in the context of the high-temperature Cu-oxide su-
perconductors and using the one-band Hubbard model, after
introducing hopping terms ¢’ and ¢’ between next-nearest-
neighbor (NNN) sites. Density-functional methods were also
used before to discuss AFM-metallic states and band-overlap
insulator-metal transitions.®>3 Within dynamical mean-field
theory, an AFM-metallic state has also been discussed.®* Ex-
perimentally, itinerant AFM states were found in the pyrite
NiS,_,Se,,%% in heavily doped manganites,%’ in
ruthenates,®® in organic conductors,?7% and in several other
materials. An incommensurate spin density wave was also
reported in metallic V,_,0;.”" The results discussed in this
paper establish an interesting connection between the Fe
pnictides and the materials mentioned in this paragraph.

The organization of the paper is as follows. In Sec. II,
results for a four-orbital model are presented. This includes a
discussion of the model, the mean-field technique, and the
results with emphasis on the intermediate-coupling state. The
photoemission predictions for this state are discussed. In Sec.
111, we show results for the two-orbital model using ED (Ref.
55) and VCA methods®®’ in addition to mean-field approxi-
mations. Section IV contains our main conclusions.

II. RESULTS FOR A FOUR-ORBITAL MODEL

In this section, we will describe a possible minimal four-
orbital model for the Fe-based superconductors. This model
presents a Fermi surface (FS) similar to that obtained with
band-structure calculations.

A. Four-orbital model

Previous studies have suggested that the Fe-As planes are
the most important substructures of the full crystal that must
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be analyzed in order to reproduce the physical properties of
the Fe pnictides close to the Fermi surface. We consequently
focus on these Fe-As planes in the present study. The effec-
tive Fe-Fe hopping Hamiltonian, using As as a bridge, can be
obtained within the framework of the Slater-Koster (SK)
formalism.”> By this procedure, here we will construct a
minimal model defined on a Fe square lattice, consisting of
the four Fe d orbitals xz, yz, xy, and x2- yz. It is assumed that
the d;2_,2 orbital lies at a substantially lower energy and is
thus always filled with two electrons.!>'¢ While the SK pro-
cedure is not as quantitatively accurate as a full band-
structure calculation, it can still provide the proper model
Hamiltonian because it correctly takes into account the ge-
ometry of the system and illustrates which orbitals are con-
nected to one another at different lattice sites. Thus, our pro-
cedure here will be to use the SK method to construct the
formal model, and then obtain the actual numerical values of
the hopping parameters via comparison with band-structure
calculations.

The Hamiltonian H=H+ H,, includes two parts: the hop-
ping term H(, and the interaction term H;,,.. The hopping term
in real space reads

Hy=2 2 2 (T"d], d; . n+ He), (1)
ij mwov o

where df o Creates an electron at site i with spin o on the
wth orbital (u=1,2,3,4 stands for the xz, yz, xy, and x?
—y? orbitals, respectively). Here, hoppings at nearest neigh-
bors (NNs) and also at NNNs along the plaquette diagonals
were considered. The hopping tensor Ti‘fj"’ has a complicated
real-space structure that will not be reproduced here. H, has
a simpler form when transformed to momentum space,

Hy=2 2 2 T*(K)d,, oy 1o )

k wv o
with
T = - 21, cos k! - 2t, cos k; —4t3 cos k; cos k;,  (3)
T%% = - 2t, cos k. — 2t, cos kj —4t5 cos k; cos ki, (4)

T'2=—4¢, sin k! sin k!, (3)

733 == 2t5[cos(k! + ) + cos(k}', + )]

— 41 cos(k, + w)cos(ky’ +m)+ A, (6)
T'3 = — 4it, sin k. + 8itg sin k! cos ky, (7)
T = - 4it, sin k; + 8itg sin k|, cos k_, (8)

T* = - 2¢;[cos(k! + ) + cos(k}’, + )]

— 4ty cos(k, + m)cos(k, +m) + Ap_y2, 9)
T = - 4ityy sin k, (10)
T%* = 4it sin k., (11)
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FIG. 1. (Color online) (a) Band structure corresponding to the
four-orbital tight-binding Hamiltonian Eq. (2) using the LDA-fitted
values of the hopping parameters provided in Table I. The Fermi
surface is formed by two holelike bands («;,a,) and one electron-
like band (B,). The chemical potential is at 0. (b) The topology of
the corresponding Fermi surface.

7% =0. (12)

Equation (2) represents a matrix in the basis {afr koo ot
where k=k’ if u=1 or 2 and k=k'+Q if u=3 or 4 with
< kx,ky< 7, Kk’ is defined in the reduced Brillouin zone
(BZ) corresponding to the two-Fe unit cell, and Q= (7, ).
In other words, the above expressions couple states with mo-
mentum Kk’ for orbitals xz and yz to states with momentum
k' +Q for orbitals xy and x>—y?. The momentum Q appears
after considering the staggered location of the As atoms
above and below the plane defined by the Fe atoms. As al-
ready mentioned, the mathematical form of this model arises
directly from the Slater-Koster considerations. This problem
is equivalent to an eight-orbital model with a Hamiltonian
expanded in the basis {dT,!M!U,dl, +Q%U}. As a result, the
eight-orbital band structure and Fermi surface (Fig. 2) are
obtained by “folding” the results in the equivalent four-
orbital problem (Fig. 1).

The actual values of the hopping parameters could in
principle be obtained from the overlap integrals in the SK
formalism.”>”®> However, to properly reproduce the Fermi
surface obtained in the local-density approximation (LDA)
(Refs. 12—16), it is better to fit the values of those hoppings.
The parameters used as well as the on-site energies A, for
the xy and x*>—y? orbitals, are listed in Table 1. The on site
energy term is given by X; /A n{ (standard notation) and it
is part of the tight-binding Hamiltonian.
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TABLE I. Fitted hopping parameters and on-site energies for the
four-orbital model used in Sec. IT A (in eV units).

A, ~0.600 Ap_p ~2.000
f 0.500 f 0.150
f -0.175 ta -0.200
1 0.800 6 -0.450
t 0.460 ts 0.005
to ~0.800 to -0.400
t 0.900

In Figs. 1 and 2, we show the band structure and the
corresponding Fermi surface for the four-orbital tight-
binding Hamiltonian in Eq. (2) using Table L. Since we as-
sume that the 3z%—r2 orbital is always doubly occupied, the
chemical potential in the undoped case is determined by lo-
cating n=4 electrons per site in the four bands considered
here. As shown in Fig. 1(b), two hole pockets centered at
(0,0) (arising from the «; and a, bands) and four pieces of
two electron pockets centered at (0, 7r) and (7,0) (from the
[ band) are obtained. The shape of the Fermi surface quali-
tatively reproduces the band-structure LDA calculations'>1°
after a 45° rotation about the center of the first Brillouin zone
(FBZ), as presented in Fig. 2(b), due to the rotation from the
Fe-Fe axis to the Fe-As axis.

To study the relation between the orbital hybridization
and the Fermi-surface topology, the projected weight of each

10 05 00 05 1.0
(b) K'X/TC

FIG. 2. (Color online) (a) Band structure of the eight-orbital
problem in the reduced BZ obtained by folding the results presented
in Fig. 1(a). (b) Fermi surface of the eight-orbital problem obtained
by folding the FS obtained in Fig. 1(b). The FS in the first (second)
BZ are indicated by continuous (dashed) lines.
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FIG. 3. (Color online) The projected orbital weight W, , of
states at the Fermi surface. Shown, as example, are results for the
outer hole pocket centered at (0,0). The definition of ® is given in
the inset.

orbital at both the hole and electron pockets were calculated.
These weights are defined via the eigenvectors of Hy:
W,u,)\(k)=%20'|Uk,,u,,o';)\ 2, where N\ denotes the band index
(ay,a,Bi,B,) and w refers to the four d orbitals. The matrix
Ux .0 diagonalizes the system [see Eq. (18) below]. An
example of the angle-resolved weights in momentum space
is shown in Fig. 3. The two hole pockets centered at (0,0)
mostly arise from the xz and yz orbitals, compatible with
LDA (Refs. 12-16) and with much simpler descriptions
based only on two orbitals.!”3¢ The electron pocket centered
at (7,0) [(0, 7)] arises mainly from the hybridization of the
xz [yz] and xy orbitals (not shown). These results are also
qualitatively consistent with those from the first-principles
calculations.'® However, there are some quantitative discrep-
ancies that lead us to believe that probably longer range than
the NNN plaquette-diagonal hoppings are needed to fully
reproduce the LDA results including orbital weights. Never-
theless, the discussion below on the metallic magnetic phase
at intermediate couplings is robust, and we believe that it
will survive when more complex multiorbital models are
used in the future.

Note that the eigenenergies (band dispersion) along the
(0,0)— (,0) and (0,0)— (0, ) directions are symmetric
about (0,0), but the eigenvectors (W, ,) show a large aniso-
tropy. For instance, at the Fermi level the a; band is almost
xz-like along the (0,0)— (47,0) direction but almost yz-like
along the (0,0)— (0, ) direction. Below, it will be dis-
cussed how this anisotropy affects the mean-field results for
the interacting system.

Let us now consider the interaction term,!” which reads

J
Hp=U, i M) + (U/ - _) > I
iu

iu<v

-2J 2 Si, Sio (13)

iLu<v

where S; , (r;,) is the spin (charge density) of orbital u at
site i and n; ,=n; , 1 +n; , . The first term is a Hubbard re-
pulsion for the electrons in the same orbital. The second term
describes an on-site interorbital repulsion, where the stan-
dard relation U'=U-J/2 caused by rotational invariance is

used.” The last term in Eq. (13) is a Hund term with a
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ferromagnetic coupling J. A complete description would also
require a pair-hopping interaction similar to the last term of
Eq. (24), where the interaction term for the two-orbital
model is shown. But ED was used to test its impact in the
case of two orbitals, and it was not found to be important.
Consequently, it was neglected in the mean-field treatment.

B. Mean-field approach

To study the ground-state properties of the system, we
apply a mean-field approximation to the model Hamiltonian
described by Egs. (1)-(13). We follow here the simple stan-
dard assumption of considering only the mean-field values
for the diagonal operators,”

o
<d2‘,,u,,odj,v,0"> = n,u, + ECOS(‘] . I.i)W[,u, 5ij5,u,1150'g—’ 5 (14)

where q is the ordering vector of the possible magnetic order.

n, and m, are mean-field parameters describing the charge

density and magnetization of the orbital u, and the rest of the
notation is standard. Applying Eq. (14) to H,,,, the mean-field
Hamiltonian in momentum space can be written as

— il
HMF_HO+ C+ 2 E,udk,lu,,odk,p,,o'
k,u,o

+ 2 nu,o(d]i,u,adk+q,;¢,a'+dlt+q,p,,odk,u,o')’ (15)

k,u,o

where k runs over the extended FBZ, H,, is the hopping term
in Eq. (2),

1
C=-NUD, <ni - Zmi> -NQU' =) 2 nn,
® nFEv

NJ
+—= > m,m,
4
nFV

is a constant, N is the lattice size, and we used the definitions

€,=Un,+QU' -J) X n,, (16)
1237
o
nﬁ,oz—E(Um#+JE m,,). (17)
vE M

The above mean-field Hamiltonian can be numerically
solved for a fixed set of mean-field parameters using stan-
dard library subroutines. The parameters n, and m,, are ob-
tained in a self-consistent manner by minimizing the energy.
In practice an initial guess for n, and m,, serves as a set of
input parameters for a given value of the couplings U and J.
The mean-field Hamiltonian is then diagonalized and n, and
m,, are re-evaluated using Eq. (14). This procedure is iterated
until both n, and m, have converged. During the iterative
procedure X n,=4 was enforced at each step such that the
total charge density is a constant. Note that in the mean-field
approximation an electron with momentum k is coupled to
an electron with momentum k+q, where q is the vector as-

sociated with the magnetic ordering. Then, the Hamiltonian
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in Eq. (15) is solved only in the magnetic reduced Brillouin
zone with only half of the size of the unfolded FBZ.

The numerical solution of the mean-field Hamiltonian im-
mediately allows for the evaluation of the band structure, the
density of states (DOS), and the magnetization (M= ,m,,
at the ordering wave vector . Moreover, we can also calcu-
late the photoemission spectral function. Assuming that the
mean-field Hamiltonian Eq. (15) is diagonalized by the uni-
tary transformation,

dk,,u,,o’ = E Uk,#,o;hyk’ (18)
N

HMF=EP>J’;%\’ (19)
Y

then the spectral function is given by

Ak ) =2 2 U poaUixnod@=p).  (20)

N o
1 &

"o O

In practice &(w—p,) was here substituted by
a broadening £=0.05 eV.

C. Mean-field results

In this section, the mean-field results for the four-orbital
model previously described are presented. Experimentally, a
(bad) metallic phase with antiferromagnetic order was ob-
served in the undoped compound LaOFeAs.>!0 It is then
important to investigate in the mean-field approximation the
properties of such a state. Here we show the numerical re-
sults for the mean-field approximation defined on a 100
X 100 square lattice.

1. Magnetic order

To study in more detail the magnetic ordered state, the
ordering wave vector q is assumed here to be (0,7) in the
mean-field approximation. In Fig. 4(a), the evolution of the
magnetization vs U, at J=U/4, is shown. At a critical value
U, =190 eV, the (0, ) order’® starts to grow continuously
from zero. This (0, 7) magnetization increases slowly until it
reaches U,=3.75 eV, where it changes discontinuously,
showing the characteristic of a first-order transition (see dis-
cussion for the origin of this transition later in this section).
Note that for U=U.,,, the magnetization for the (0, ) state
is smaller than 1.0 (with a normalization such that the maxi-
mum possible value is 4.0), indicating that there is an inter-
mediate U regime that can accommodate the rather weak
(0,7) magnetic order found in the neutron-scattering
experiments.”!? In Fig. 4(b), magnetization curves for the
same state at various values of J are presented. Two transi-
tions for all J/ U ratios studied are observed, similarly as for
J=U/4 in (a).

2. Band structure and Fermi surfaces

Let us analyze in more detail the (7r,0) AFM-ordered
state. Since varying J/U does not significantly alter the re-
sults, the value J=U/4 is adopted in the rest of the analysis.
In Figs. 5-7 the band structures and Fermi surfaces of this
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FIG. 4. (Color online) (a) The mean-field evolution with U of
the magnetization of the state ordered at wave vector (0,7) with
J=U/4. Shown are the two critical values: one where the magneti-
zation becomes nonzero and a second one where a discontinuous
behavior is concomitant with a metal-to-insulator transition, as de-
scribed in text. (b) The same magnetization curve as in (a) but for
several values of J/U. The magnetization shown in (a) and (b) is
normalized such that the maximum value is 4, corresponding to
four spin polarized electrons, one per orbital, at each site.

state at several values of U are extracted from the calculated
mean-field photoemission spectral-function data. Both the
band structure and the Fermi surface at the critical point
U, =1.90 eV are, of course, identical to those at U=0 in
Fig. 1. This noninteracting electronic description of the sys-
tem changes gradually upon the establishment of the (0, )
AFM order. As discussed in more detail below, gaps open at
particular momenta, while other bands crossing the Fermi
surface do not open a gap. Thus, this is a metallic regime
with magnetic order. Finally, at the magnetization disconti-
nuity a full gap develops.

3. Bands of magnetic origin in the (0, ) antiferromagnetic state

Due to the off-diagonal term in Eq. (15), an electron with
momentum Kk is coupled to another with momentum k+q if
their orbital characters are the same. This generally leads to
avoided level crossings and opens a gap proportional to the
magnetization. If the hole and electron Fermi surfaces can be
connected by the vector q, then a magnetic state with spin
ordering at q is stabilized over the nonmagnetic state due to
the Fermi-surface nesting effect. The magnetic state gains
energy via the opening of a gap near the Fermi level. This
magnetically ordered state significantly changes the band
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FIG. 5. (Color online) Mean-field photoemission band structure
of the (0,77) AFM state in the energy window [-2 eV, 2 eV] at
U=1.90 eV, U=2.50 eV, U=3.20 eV, and U=4.00 eV, from top
to bottom, with J=U/4. The first U is at the first transition and still
has the shape of the noninteracting limit. The second two values of
U are in the intermediate-coupling regime, and the presence of
states at energy O (location of the chemical potential) indicate a
metallic state. The last coupling, U=4.00 eV, is above the second
critical point, and thus already in the gapped regime. In the two
intermediate couplings, 2.50 and 3.20 eV, weak bands not present in
the noninteracting limit (top panel) are revealed. These are the
bands caused by the (0, 7) AFM order, which should be observable
in photoemission experiments.

structure of the noninteracting case. As shown in Figs. 5(b)
and 5(c), gaps open in this magnetically ordered phase,
which is consistent with the depletion of the spectral weight
close to the Fermi level found using the dynamical mean-
field approximation.”” More interestingly, the magnetic order
gives rise to the emergence of new bands of magnetic origin,
sometimes called the “shadow bands,” also shown in Figs.
5(b) and 5(c), and with more detail for a special case in Fig.
6. Similar issues were discussed in the context of high-
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FIG. 6. (Color online) Mean-field photoemission band structure
of the (0, 7) AFM state in the energy window [-0.8 eV, 0.8 eV] at
U=2.50 eV. Bands caused by magnetic order that are not present
in the nonmagnetic case U=0.0 are shown here in more detail than
in Fig. 5.

temperature superconductors, where the existence of bands
caused by the staggered magnetic order was extensively
studied before.”® In fact, experiments for undoped cuprates
revealed a photoemission spectral function in excellent
agreement with theoretical expectations,” i.e., containing the
predicted bands generated by the magnetic order. Thus, it is
to be expected that the (0,77) AFM order of the Fe pnictides
should also produce magnetically induced bands in the un-
doped limit and even in the doped case if the magnetic cor-
relation length remains large enough.

4. First-order transition at U,

Regarding the second transition at U, the qualitative rea-
son for its presence lies in the incompatibility of the
intermediate-coupling metallic state with the large U limit.
The mechanism of nesting that causes the special features of
the intermediate U state previously discussed, including the
survival of portions of the Fermi surface, will lead to an
energy that eventually cannot compete with a fully gapped
state at large U at the electronic density considered here; thus
a transition must eventually occur.

But why is the second transition discontinuous? In Fig. 5
the coupling between the hole pockets and the electron
pocket at (0, 7) leads to the distortion of the Fermi surface in
the (0,77) AFM state. Such a coupling between states with a
specific orbital symmetry and momentum also accounts for
the metallic nature of the (0,7) AFM state; the electron
pocket at (7r,0) is almost undistorted for U< U,,. However,
when U is approaching the second critical value U,,, the
peak at (7, 7r) with occupied states in the «; band becomes
energetically closer to the Fermi level (its energy is increas-
ing with U). If the Fermi-surface nesting effect could be
neglected at U,,, then a smooth behavior would be observed
since the charges could transfer continuously from the peak
at (7, 7), after crossing the Fermi level, to the peak at (0,0).
However, note that the valley of the 8, band at (7r,0) and the
peak of the a; band at (7, 7) have both a partial xy symme-
try. Moreover, they are connected by the vector q=(0, 7).
Thus, it will be expected that a gap close to the Fermi level
will open to minimize the energy. At U,,, the system gains
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FIG. 7. (Color online) Mean-field photoemission Fermi surfaces
in the (0,7) AFM-ordered state at U=1.90 eV, U=2.50 eV, and
U=3.20 eV from top to bottom. The results are obtained via
A(k,w) using a window of 20 meV centered at the Fermi energy.
Shown are results obtained from an equal weight average of data
using A(k,w) and A(p,®), where k=(k,,k,) and p=(k,,~k,). By
this procedure the results are properly symmetrized under rotations
in the nonmagnetic phase. The anisotropy of the results in the (0, 7)
ordered intermediate U region does appear because the spin order
breaks rotational invariance.

maximal energy by opening a finite gap at both (7,0) and
(7r,7), and lowering the energy of the « bands at (0,0) such
that they become fully occupied. This leads to discontinuous
changes in the population of the individual orbitals, produc-
ing discontinuous changes in the orbital magnetizations, and
concomitantly, a finite gap. Since in the real undoped Fe-
pnictide materials the full-gap regime is not realistic, then
we can proceed with the rest of the analysis below without
further consideration of this discontinuity in the magnetiza-
tion.
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5. Anisotropic Fermi surface in the undoped
parent compound

The appearance of the (0,7) magnetism with magneti-
cally induced bands leads to an anisotropic distortion of the
Fermi surface in the magnetically ordered state. For instance,
consider the q=(0, 7) mean-field state. To predict the pattern
of gaps in this state, the information previously discussed in,
e.g., Fig. 3, is important. Through the projected weights, it
was observed that the B, electron pocket centered at (0, )
has mainly yz+xy symmetry, while the (7r,0) electron pocket
has mainly xz+xy. A dominance of the yz symmetry is found
in the a; hole pocket along the (0,0) — (0, * 7r) directions
and in the «, hole pocket along the (0,0) — (= ,0) direc-
tions. Then, for the magnetic state with q=(0,7), a gap
should open in the (0,0)— (0, = ) directions for the «;
(inner hole pocket) band and for the electron pocket at
(0, ), but the @, (outer hole pocket) band remains gapless.
In addition, a gap opens in the (0,0) — (= ,0) directions for
the «, band, but both the inner hole pocket and the (7,0)
electron pocket remain gapless. These results are indeed ob-
served numerically as shown in Figs. 5(b) and 5(c).

Due to these anisotropic gaps, the Fermi surfaces of the «
bands change their topology from two pockets [Fig. 7(a)] to
four arcs that are very close to one another, as shown in Fig.
7(b). In between the arcs, there is actually a nonzero but
weak intensity at the location of the original hole pockets.
For LaOFeAs, since a weak (0, 7) AFM order has been ob-
served, the Fermi surface is expected to have a similar shape
as that shown in Fig. 7(b). However, topology of the Fermi
surface in this state is sensitive to the value of the coupling
U, further increasing this coupling the four arcs merge into a
single pocket [Fig. 7(c)]. Then, angle-resolved photoemis-
sion spectroscopy (ARPES) experiments can provide valu-
able information about the exact shape of the Fermi surface,
and thus, the interaction strength.

Besides the anisotropic gaps near the Fermi level, gaps far
from the Fermi level also exist [see, for instance, Fig. 5(b)].
This cannot occur in a one-band model because the opening
of these gaps would not provide any energy gain. However,
such gaps are possible in more complex multiorbital models;
since the off-diagonal term in Eq. (15) depends on the mag-
netization that is contributed by each orbital, once the mag-
netic state is stabilized by the opening of a gap near the
Fermi level, the off-diagonal term becomes nonzero even for
the bands far from the Fermi level.

A rather surprising result is that the intensities of the spec-
tral function of the two « pockets display an anisotropy even
in the nonmagnetic phase (not shown). This is puzzling since
from Fig. 3, it can be observed that 2,W,, \(k)=1 for any k.
Naively, this would lead to an isotropic A(k,w). However,
from Eq. (20), A(k, w)=2) 8(w—p,) W, (k), where

2

W)/\(k) = 2 2 Uk,,u,,zr;}\ (21)
o I

Here, note that an anisotropy could arise from the interfer-
ence between different orbitals. To observe this more explic-
itly, Wy for the two a hole pockets at U=0 is shown in Fig.
8. These functions are not constant but oscillate between 0
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FIG. 8. (Color online) The angular resolved weight W' at U
=0 obtained using Eq. (21) for the two a holelike pockets. The
definition of O is the same as in Fig. 3.

and 2. From Fig. 8, it is observed that for the a; band W’
reaches its maximum at, e.g., —7/4, corresponding to the
(0,0)— (=, ) direction, while for the @, band, the maxi-
mum of W’ is at, e.g., 7/4, i.e., in the (0,0)— (7, 7) direc-
tion. Such an anisotropy in A(k,w) is not a consequence of
the mean-field approximation but is related to the multiband
nature of the model itself. Interestingly, such an anisotropy in
the topology of the Fermi surface in the A(k,w) data may
account for the anisotropic features of the hole pocket in the
recent ARPES experiment on LaOFeP3’ where a long-
ranged (0, 7) AFM order is absent.®! However, in Fig. 7 this
problem is avoided by a symmetrization procedure (see cap-
tion of Fig. 7) that restores rotational invariance to the non-
magnetic state. Thus, the anisotropy of the important inter-
mediate U regime fully originates in the lack of rotational
invariance of the antiferromagnetic state with a wave vector
(0, ) or (,0).

6. Metallic magnetically ordered phase at intermediate
couplings and existence of a pseudogap

As already remarked, Fig. 5 indicates that for moderate U
the magnetically ordered system is still gapless, i.e., it is in a
metallic phase with a finite Fermi surface due to the phenom-
enon of “band overlapping” described in Sec. I. This inter-
mediate state is also revealed via the evolution of the DOS in
Fig. 9. As displayed in Fig. 9(a), a pseudogap in the DOS
near the chemical potential exists in the regime U, <U
<U,,. If the availability of states at the Fermi level is as-
sumed to be directly related with transport properties, a DOS
pseudogap suggests bad-metallic characteristics in the inter-
mediate U regime. Hence, the finding of a pseudogap in the
intermediate U regime is consistent with several theoretical
studies that have suggested that the parent iron pnictide is a
bad metal.'®778283 The pseudogap turns into a hard gap at
U>U,,, where the system becomes an insulator. In Fig. 9(b)
the value of the DOS at the chemical potential vs U is plot-
ted. Two transitions can be easily identified. For U<U,,,
N(u) is a constant. It decreases continuously for U>U,,,
indicating a second-order transition from the paramagnetic
metallic phase to the metallic phase with antiferromagnetic
order. At U>U,,, it drops abruptly to a small value, corre-
sponding to the formation of a full gap in the insulating
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FIG. 9. (Color online) (a) Density of states at various values of
U showing the development of a pseudogap at the chemical poten-
tial in the (0, r) AFM-ordered state. (b) The evolution of N(w), the
DOS at the chemical potential, indicates three well-separated re-
gions. The nonzero values of N(w=u) in the insulating phase at
U>U,, arise from the finite broadening of the raw DOS numerical
data.

phase (the finite DOS at large U is simply caused by the
artificial broadening of delta functions to plot results).

7. Stability of the (w,0) antiferromagnetic phase

Consider now the stability of the antiferromagnetic-
ordered state by analyzing two possible magnetically ordered
states: one with q=(0,7) and another one with (7r,7). The
U dependence of the magnetization and the energy difference
between these two states are presented in Fig. 10. The (77, )
order appears at U=~2.5 eV, which is higher than the U, for
the (0, 7) state. However, with increasing U, the (1, ) stag-
gered magnetization increases much faster than for the (0, )

=4
=y
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w
T

o
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e
=
3

E(0.7)-E(m,7) (V)

[\
T

Magnetization
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FIG. 10. (Color online) Main panel: the evolution of the mag-
netization with U for q=(0, ) and (77, 7). Inset: energy difference
between the two states of the main panel.
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AFM state. As shown in the inset of Fig. 10, the (7, ) state
becomes more stable than the (0, ) state for U=2.65 eV.
We have analyzed several other sets of hopping parameters
and ratios J/ U, and the results are qualitatively the same; the
(0, 77) states are stable but in a narrow region of couplings.

Hence, in our model the (0, 77) AFM-ordered ground state
becomes unstable to another AFM state with q= (7, ) at
U=2.65 eV through a first-order transition. This is not too
surprising considering the values of the hopping parameters;
the NN and NNN hoppings are similar in magnitude. Thus,
there is a competition between different spin tendencies, as it
occurs at intermediate couplings in Heisenberg spin systems
with NN and NNN terms. However, the neutron-scattering
experiments show that the ground state of several undoped
Fe pnictides presents only the (7,0) AFM order (which in
our model is degenerate with the (0,77) AFM state consid-
ered in this section). To understand the predominance of this
state over the (7, 71) AFM state, note that it has been argued
that the emergence of the (7,0) AFM state is closely related
to a structural phase transition®!? from space group P4/nmm
to P112/n. The lattice distortion at the transition breaks the
fourfold rotational symmetry and lifts the degeneracy of the
xz and yz orbitals. Thus, according to recent calculations that
incorporate the lattice distortion, the system prefers the
(7r,0) state over the (77, 1) state.? Since the effects of lattice
distortions are not included in our model, then the (7, )
spin-ordered state apparently strongly competes with the
(0, )-(7,0) spin states but this is misleading and caused by
the absence of lattice energetic considerations.

This discussion leads us to believe that simply analyzing
the (0,7) AFM state found in the mean-field approximation
should be sufficient to understand some of the electronic
properties of the real system. However, it is remarkable that
even in the competing (7, ) ordered state there are also two
magnetically ordered phases: a metallic phase for moderate
U values and an insulating phase with a finite gap at larger U
values (see Fig. 11). This qualitatively agrees with the pre-
vious analysis for the (0,7r) AFM-ordered phase. This sug-
gests that the existence of a metallic magnetically ordered
phase at moderate U is an intrinsic property of the multior-
bital Hubbard model, treated in the mean-field approxima-
tion, which is robust varying the interactions, as discussed in
more detail in Sec. II C 8.

8. Mean-field results for other models with several
active orbitals

We have applied the mean-field technique to several other
multiorbital models such as a five-orbital model,?® another
four-orbital model,3? and an effective three-orbital model in-
cluding the xz, yz, and xy orbitals.>* For all these multiband
models a Coulombic interaction term similar to Eq. (13) has
been used. A robust conclusion of our mean-field analysis is
that a transition from a paramagnetic metal to a metallic
(0, ) AFM-ordered state is found in all the models consid-
ered here.

Let us discuss the results for the five-orbital model.?® This
model does not give precisely the correct Fermi-surface to-
pology in the undoped case since it contains a pocket at
(77, 7). This problem can be fixed by slightly modifying the
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FIG. 11. (Color online) Mean-field band structures of the spin-
ordered (,r) state in the energy window [-2 eV, 2 eV]. The
upper panel is obtained at U=2.75 eV where the band overlap in-
dicates a metallic state even if the order parameter is nonzero. The

lower panel is at U=4.50 eV where the gap is fully developed.

electronic concentration to, e.g., n=6.2. However, in our
study we will consider n=6.0 for consistency with the rest of
the analysis. Within the mean-field approximation, the mag-
netization at n=6.0 is shown in Fig. 12. In this case there is
a broad region of metallicity, and the second critical Hubbard
coupling (also indicated) does not involve a discontinuity.
The Fermi surface in the inset shows pockets at (0,0), (r,0),
(0,7), and (7, 7). We conclude that a variety of multiorbital
models show similar features as the four-orbital model ana-
lyzed before, particularly regarding an intermediate metallic
magnetic phase.

III. RESULTS FOR THE TWO-ORBITAL MODEL

The complexity of four- and five-orbital Hamiltonians
leads to very large Hilbert spaces even for small clusters, and
as a consequence, it is not possible to compare the mean-
field results against exact diagonalization (ED) (Ref. 55) or

W
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Stripe Magnetization

(=]
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FIG. 12. (Color online) Main panel: the evolution of the mag-
netization for the state with q=(0, ) in a five-orbital model (Ref.
26) at electron filling n=6.0. Inset: the Fermi surface at U=0.

104510-9



YU et al.

variational cluster approach (VCA) (Refs. 56 and 57) results.
For this reason the two-orbital model, which was recently
studied with ED and VCA methods,!” is revisited here to
assess the validity of the mean-field approximation. Our con-
clusion is that all three techniques lead to similar results for
the two-orbital model, lending support to our claim for the
existence of an intermediate-coupling metallic and magnetic
state.

The two-orbital model has been widely analyzed in recent
literature and its derivation and other properties will not be
repeated here. It is given by

H20:HK+Hint’ (22)

where the kinetic energy Hy in real space is!”3¢

T i
Hy== 12 (], issno+ by oldisiy o+ Hee))
i,o
- tzz (diT,x,gdi+)?,x,U + diT,y,adiﬂ”',y,a- + H'C')
i,o

- t3 2 (diT,x,< i+a+v.x,0 + d{y,(fdi+ﬁ+ﬂ,y,a' + HC)

i,i, 0,0

+132 (d oisinsyo di , olisiss o+ HC)
i,o
—1,2 (di ¢ o Bisisy.ot di y oiviog v+ H.C)
i,o
- IL'LE (ni,x + ni,y . (23)
i

The form of Hy in momentum space was provided in Refs.
17 and 36 and is given by Egs. (3)—(5) of the four-orbital
model. The Coulomb interaction terms are

Hiy = UE 1 o Nia,| (U’ _ J/2)2 i iy — 2]2 Si,x . Si,y
i,a i "
* JE. (d;"’Td;tx,ldi,y,ldi,y,HH.c.), (24)

where the notation is the same as for the case of the four-
orbital model but with a=x,y here denoting the orbitals xz
and yz. The index 4 is a unit vector linking NN sites and
takes the values X or y. u is the chemical potential. As for the
case of four orbitals, the relation U’'=U-2J originating in
rotational invariance” was used. In the last term in Eq. (24),
the same rotational invariance also establishes that the pair-
hopping coupling J' must be equal to J. As before, the hop-
pings are determined from the orbital integral overlaps
within the SK formalism or from LDA band dispersion
fittings.!”-3¢ Most of the properties of this two-orbital model
are formally similar to those of the four-orbital model, and as
a consequence, several details of the analysis of Sec. II do
not need to be repeated here.

A. Mean-field approximation

Following the same procedure used for the four-orbital
model, here we consider only the mean-field values that are
diagonal with respect to the Fe site, orbital, and spin labels
such that
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FIG. 13. (Color online) Two-orbital model mean-field calculated
(7,0) ordered magnetization m vs U. Panel (a) is for the LDA-fitted
hoppings (Ref. 36), while panel (b) is for the SK hoppings (Ref.
17). The solid red line is for J=0. With a blue dashed line the
results at J=U/4 are indicated. The dotted black line denotes results
for J=U/8. The large dot in each curve indicates the value of m at
U., where the metal-to-insulator transition occurs (see text). Note
the absence of a first-order transition at U, as in the four-orbital
model.

<d;r,a,[rdl’,a’,o’> = |:na + gcos(q : rl)ma:| 511’ 5aa’5a'a-
(25)

After introducing Eq. (25) to decouple the four-fermion
interactions in Eq. (24), and then transforming into momen-
tum space, we obtain

1 J
HYF = _UnY, (ni - Zmi) - 4<U’ - E)Nnxny

JN , J
PR +E[Unx+2<U’—5)n}}nkm

2 k,o

J
+ E |:Uny+ 2<U’ _ E)nx]nk’w

k,o

1
- ZE (Umx + ]my) (dltmrdk+qx(r + le(+qx(rdk/m')
ko

1 , .
_ ZkE (Um, +Jm)(dl oisqyo + disqyoliyo) -

(26)

The four mean-field parameters n,, ny, n, and m, are
determined in the usual way by minimizing the energy and
by requesting that the system be half filled. The half-filling
condition determines that n,=n,=0.5 while the values of m,
and m, are a function of U and J. We have observed that

Varyinjg U and for fixed J, m, becomes nonzero at a critical
value U=U,, where a gap opens separating the “valence”
and “conduction” bands at particular momenta, but overall,
there is still an overlap in the energy of some bands and the
chemical potential crosses both of them. Thus, the system
has developed magnetic order but it is still a metal. However,
the bands no longer overlap when U > U, and thus, a metal-
insulator transition occurs. These results are similar to those
obtained using more orbitals in the model.

In Fig. 13, the (7,0) ordered magnetization m=m,+m, vs
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FIG. 14. (Color online) Two-orbital model mean-field calculated
density of states (a) for the LDA-fitted hoppings (Ref. 36) and (b)
for the SK hoppings (Ref. 17). Panel (a): the solid red line is for
U=2.5, blue dashed line is for U=5.0, and dotted black line is for
U=8.0. Panel (b): solid red is for U=0.5, blue dashed is for U
=0.8, and dotted black is for U=2.0. J=U/4 is used in both panels.

U is shown for J=0, U/4, and U/8. Panel (a) contains the
results for the LDA-fitted hoppings*® while panel (b) is for
the SK hoppings'” with pdo=-0.2. The critical coupling U,
is the value of U where m becomes different from zero.
There is a second critical coupling U,, that is obtained by
monitoring the density of states, and it separates a metallic
from an insulating regime. For completeness, this second
coupling is indicated with a full circle for each case. In panel
(b), the shape of the curves is the same for the three values of
J investigated, and the actual value of U,; mildly depends on
J.

The mean-field density of states (DOS) N(w) is presented
in Fig. 14 for some values of U and J=U/4, and the two sets
of hoppings considered here. The solid curve in both panels
shows results for U<<U,,. In this case the system is metallic.
The dashed curve displays the DOS for a value of U in
between the two critical points. Although the DOS varies
continuously as U increases, it is clear that this regime is
qualitatively different. A deep pseudogap has developed at
the chemical potential. The system is still metallic in this
regime, although likely with “bad metal” characteristics. Fi-
nally, the dotted curve shows the DOS for U>U,,. In this
case, there is a gap at the chemical potential and the system
has become insulating. Interestingly, the transition at U, is
not first order for the two-orbital model, in contrast to the
case with four orbitals.

B. Mean-field results for the bands and Fermi surface

The mean-field band structure obtained by solving the
mean-field self-consistent equations is shown along high-
symmetry directions in the Brillouin zone in Fig. 15. The
panels on the left (right) column correspond to LDA-fitted
(SK) hoppings. The top row shows the band dispersion for
U<U,,. The corresponding Fermi surface (FS) in the ex-
tended and reduced Brillouin zones (BZs) are shown in Figs.
16(a) and 16(c), and they agree with previous discussions for
the two-orbital model.'’

The second row of panels in Fig. 15 shows the band dis-
persion in the interesting regime U, <U<U,,. It can be
observed that gaps have opened along, e.g., the direction
(0,0)-(0, ) but not along other high-symmetry directions.
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FIG. 15. (Color online) Two-orbital model mean-field band
structure along high-symmetry directions in the extended FBZ. The
panels on the left column show results for the LDA-fitted hoppings
(Ref. 36), while results on the right are for the SK hoppings (Ref.
17). (a) U=2.5, (b) U=5.0, (c) U=8.0, (d) U=0.5, (¢) U=0.8, and
(f) U=2.0. In all cases, J=U/4 and the magnetic order wave vector
is (71,0).

The partial gaps remove portions of the original FS and pro-
duce the A(k, w) disconnected features (arcs) at I' shown in
panel (b) of Fig. 16. Note that in Fig. 7(b), the results for the
four-orbital model also contained arcs but they appeared in a
more symmetric manner, namely, with four arcs surrounding
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FIG. 16. (Color online) Mean-field photoemission Fermi surface
for the LDA-fitted hoppings (Ref. 36) in the unfolded FBZ for (a)
U=1 and (b) U=3, and in the folded FBZ for (c) U=1 and (d) U
=3. The ratio J=U/4 was used, and the magnetic order wave vector
is (7,0). These results were obtained via A(k,w) using the same
symmetrization procedure and energy window centered at the Fermi
energy as in Fig. 7.

104510-11



YU et al.

the I" point. Two of those arcs were located in the inner hole
pocket and two in the outer hole pocket, while in Fig. 16(b)
there are only two arcs around the I" point. However, as often
remarked in the context of the two-orbital model, to compare
with either experiments or results of models with more or-
bitals, it is crucial to fold the results since by this mechanism
the hole pocket at M becomes the outer hole pocket at I'.
Following this procedure, in Fig. 16(d) the folded results are
shown and now there are four arcs around the I' point, in
good agreement with the results of the four-orbital model.
We conclude that in the interesting intermediate-coupling re-
gime, both models give similar results upon folding of the
extended Brillouin zone.

The last row of panels in Fig. 15 shows the band disper-
sion for U>U,,. Now the upper and lower bands no longer
overlap. The gap is complete and there is no FS. The system
has become an insulator, as can be seen in the DOS shown in
Fig. 14.

The intensity of the features determining the Fermi sur-
face should be calculated using the spectral function A(K, ).
Figure 15 only shows the eigenvalues of the mean-field study
without incorporating the photoemission intensity of each
state. It is only when the strength of the coupling U becomes
very large that the spectral weights for all the bands will be
equal. Otherwise, some of the bands will produce strong FS
while others will produce only weak magnetically induced
“shadow” features that are hard to observe, as already shown
in Fig. 16. To better visualize the bands induced by magnetic
order, in Fig. 17 the mean-field spectral function A(k,w) is
presented along the high-symmetry directions in the BZ for
the two-orbital model with the SK parameters.'” For U
<U,,, panel (a), the spectral weight resembles the noninter-
acting band structure, i.e., there is negligible spectral weight
in the magnetically induced bands. For U, <U<U.,,, panel
(b), the bands become distorted and the bands of magnetic
origin develop particularly at the locations in which a gap
opens. There are other bands still crossing the Fermi energy;
thus the system is metallic. Finally for U> U,,, panel (c), the
gap is complete and the magnetic bands are well developed,
i.e., four peaks can be observed in A(k,w) for almost all
values of k. Figure 18 shows the results for the LDA-fitted
hoppings®® at J=U/4; here a similar qualitative discussion
applies. Other values of J such as J=0 and J=U/8 (not
shown) were also considered, and the results are qualitatively
the same.

C. Exact diagonalization results

To analyze the qualitative reliability of the mean-field re-
sults, we have performed ED calculations on finite clusters.
In our previous effort,!” it was discussed that due to the rapid
growth of the Hilbert space with the number of sites N, the
largest cluster where the two-orbital model can_ be exactly
diagonalized has only N=8 sites. It is a tilted V8 X v8 clus-
ter, and when periodic boundary conditions are implemen-
ted, the available values of the momenta are k=(0,0),
(xmw/2,x7/2), (0,7), (7,0), and (7, 7). This limited set
of momenta is not well suited to analyze band dispersions in
the BZ, and the use of “twisted” boundary conditions (TBCs)
(see below) for the eight-site cluster would require a compu-
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FIG. 17. (Color online) Two-orbital model mean-field spectral
function along high-symmetry directions in the extended FBZ using
SK hoppings (Ref. 17). (a) U=0.5, (b) U=0.8, and (c) U=2.0. The
Hund coupling is fixed to J=U/4 and the magnetic order wave
vector is (7,0).

tational effort that is too high. However, via the study of spin
correlations it has been observed that the (7,0) AFM order
characteristic of this model is also apparent in the even
smaller 2 X 2 cluster. For this very small system, the limited
number of available momenta can be enlarged by implement-
ing TBCs, namely, requesting that d(N;+1)=e'?d(1) where
N, is the number of sites along the i=x or y direction in the
square cluster and ¢ is an arbitrary phase. With these TBCs
27+ .
the values of momenta allowed are now k,:T with n;
ranging from O to N;—1. Thus, we can calculate the spectral
functions for a variety of values of k using this TBC ap-
proach applied to the 2 X2 cluster. While the very small size
is still a serious limitation, note that there are simply no other
procedures available to contrast the mean-field results
against exact results at intermediate couplings. Our goal us-
ing this limited size cluster is merely to analyze if mean-field
conclusions stand against exact results.

In Fig. 19, the spectral function A(K, w) is presented along
the main diagonal of the extended BZ for different values of
U and with /J=U/4. These data have to be compared with the
mean-field prediction shown in Fig. 18. We present the re-
sults for U=0 for comparison and to demonstrate that the
correct dispersion is obtained in spite of the fact that the
cluster is so small. The finite values of U have been chosen
to be in the magnetic-metallic region (U=2.5 and 5.0) and in
the insulating region (U=8) according to the mean-field re-
sults. The main point of this figure is to report the develop-
ment of bands induced by magnetic order with increasing U.
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FIG. 18. (Color online) Two-orbital model mean-field spectral
function along high-symmetry directions in the extended FBZ for
the LDA-fitted hoppings (Ref. 36). The couplings used are (a) U
=2.5, (b) U=5, and (c) U=8. In all cases J=U/4, and the magnetic
order wave vector is (77,0).

A representative momentum for these magnetically induced
bands is highlighted with an arrow in the figure. With in-
creasing U, the magnetic bands smoothly develop [concomi-
tant with the development of (7,0) AFM order at short dis-
tances, as will be shown later] and at least along the main-
diagonal direction in the extended FBZ that should occur
simultaneously with the opening of a gap. Thus, our first
conclusion is that the extra weak features in the one-particle
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FIG. 19. (Color online) Two-orbital model spectral function
along the (0,0) to (7, ) direction in the extended FBZ for the
LDA-fitted hoppings (Ref. 36). (a) is for U=0.0, (b) is for U=2.5,
(c) is for U=5.0, and (d) is for U=8.0. The Hund coupling is J
=U/4. The method is ED and the lattice is 2 X2 with TBC. The
arrows indicate the magnetic bands discussed in text.
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FIG. 20. (Color online) Two-orbital model spectral function
along the (0,0) to (77,0) and (7r,0) to (0, ) directions in the ex-
tended FBZ for the LDA-fitted hoppings (Ref. 36). (a) and (b) are
for U=0, while (c) and (d) are for U=2.5. The Hund coupling is
J=U/4. The method is ED and the lattice is 2 X2 with TBC. This
figure shows that the results barely change between the two values
of U, suggesting the survival of a metallic state at nonzero U.

spectral function predicted by mean field due to the magnetic
order do appear in the ED results. At large U there is no
doubt that a substantial gap is observed, as in the mean-field
approach. We also performed calculations with other values
of J such as J=0 and J=U/8 (not shown), and the conclu-
sions are qualitatively the same as for J=U/4. Qualitatively
similar conclusions were reached using the SK hoppings.'”

Let us analyze now other directions in momentum space.
In Fig. 20, the (0,0) to (7,0) and (,0) to (0, ) directions
are investigated at U=0 and 2.5. The results indicate negli-
gible changes along these directions by turning on U; the
system appears to remain metallic. However, as shown be-
low, the NN (7r,0) AFM order in this small cluster is already
robust at U=2.5. Thus, these results are compatible with the
concept of a state simultaneously metallic and magnetically
ordered. Moreover, by monitoring the opening of the com-
plete gap we found that the metal-insulator transition occurs
at a value of U, in good agreement with the mean-field
predictions. The existence of a U, is a more complicated
issue but it can be inferred from the development of the
magnetic bands in A(k, w) which also occurs in a range of U
consistent with the mean field.

In Fig. 21 we present the magnetic structure factor S for
k=(0,7) which is the value of the momentum for which it
has a maximum [degenerate with (77,0) for this small clus-
ter]; panel (a) shows results for the SK hoppings'’ while
panel (b) is for the LDA-fitted hoppings.*® To reduce the
finite-size effects, results for the N=8 cluster are presented,
although the results in the 2 X 2 cluster are qualitatively simi-
lar. For large U, the monotonic increase in S with U agrees
with the mean-field results. At small and intermediate U, the
(7,0) correlations are robust, and for these small clusters
this is equivalent to long-range order. But the apparent lack
of a gap at U=2.5 along particular directions in momentum
space (discussed before) leads us to believe that the ED re-
sults are compatible with a metallic and magnetic phase at
intermediate U.
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FIG. 21. (Color online) The magnetic structure factor at k
=(0, ) vs U calculated by ED of an eight-site cluster for the values
of J indicated. (a) is for the SK hoppings (Ref. 17) and (b) is for the
LDA-fitted hoppings (Ref. 36). The insets show the results in a
more extended range of U.

D. VCA results

In this final section, numerical results for the spectral
functions and the density of states obtained with the VCA
technique®®>” are presented. This method embeds the ED
solution of a small 2 X2 cluster into a very large system of a
size comparable to the 100 X 100 momentum points used in
the mean field, and thus interpolates between the results ob-
tained independently by the ED and mean-field approaches.
The VCA results discussed here are for the SK parameters. '’
Figure 22 shows the VCA density of states. The behavior
with increasing U is remarkably similar to that obtained in
our mean-field calculations presented in Fig. 14(b). Metallic,
pseudogap, and insulating regimes can be clearly observed.

The results for A(k, ) calculated with VCA are shown in
Fig. 23. Once again, a remarkable quantitative agreement
with the mean-field results of Fig. 17 is found.

IV. CONCLUSIONS

In this investigation, the mean-field technique was applied
to multiorbital Hubbard models for the Fe pnictides. Varying

U=0.0
i —U=05

FIG. 22. (Color online) VCA-calculated density of states for
different values of U in the metallic (good metal and pseudogap)
and insulating regimes with the SK hopping parameters using
pdm/pdo=-0.2 and J=U/4.
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FIG. 23. (Color online) VCA-calculated spectral functions along
high-symmetry directions in the BZ for the SK hopping parameters
with pdw/pdo=-0.2, J=U/4, and wave vector (7,0). (a) U=0.5;
(b) U=0.8; (c) U=2.0.

U, three regions were observed. At small coupling, the re-
sults are as in the noninteracting limit. In the other extreme
of very large U, the ground state has a robust gap and the
(77,0) AFM order parameter is large. The main result of our
effort is the presence of an intermediate U coupling regime
where a (7,0) AFM order is shown to coexist with a metallic
ground state due to band overlaps. This state has similar
characteristics as the parent compounds of the Fe-pnictide
superconductors. From the DOS, our effort predicts that a
pseudogap should be observed in the undoped parent com-
pounds, similarly as already found in the doped case. Al-
though further theoretical work is still needed to firmly es-
tablish the existence of this interesting intermediate-coupling
regime, for the case of two orbitals our conclusions were
tested using the ED and VCA methods, and the results are
compatible with mean field.

The analysis of the intermediate U regime allowed us to
predict the results for angle-resolved photoemission experi-
ments. Interesting anisotropies manifested as arcs at the
Fermi surface. New bands of magnetic origin were also dis-
cussed. The two- and four-orbital models lead to similar re-
sults in this context. Future work will address the optical
properties of the intermediate-coupling regime and the super-
conducting state that may arise from its doping.
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