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To understand the role that degeneracy, hybridization, and nesting play in the magnetic and pairing properties
of multiorbital Hubbard models we here study numerically two types of two-orbital models, both with holelike
and electron-like Fermi surfaces (FS’s) that are related by nesting vectors (π,0) and (0,π ). In one case the bands
that determine the FS’s arise from strongly hybridized degenerate dxz and dyz orbitals, while in the other the
two bands are determined by nondegenerate and nonhybridized s-like orbitals. Using a variety of techniques,
in the weak-coupling regime it is shown that only the model with hybridized bands develops metallic magnetic
order, while the other model exhibits an ordered excitonic orbital-transverse spin state that is insulating and does
not have a local magnetization. However, both models display similar insulating magnetic stripe ordering in
the strong-coupling limit. These results indicate that nesting is a necessary but not sufficient condition for the
development of ordered states with finite local magnetization in multiorbital Hubbard systems; the additional
ingredient appears to be that the nested portions of the bands need to have the same orbital flavor. This condition
can be achieved via strong hybridization of the orbitals in weak coupling or via the FS reconstruction induced
by the Coulomb interactions in the strong-coupling regime. This effect also affects the pairing symmetry as
demonstrated by the study of the dominant pairing channels for the two models.
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I. INTRODUCTION

Among the several aspects of the study of the iron-based
superconductors that are still controversial and unsettled,1 the
following two questions have attracted considerable attention:
(i) Does the magnetic order observed in the parent compounds2

arise from the nesting properties of the noninteracting (or high
temperature) Fermi surface3,4 or should a better description be
based on the superexchange Heisenberg interactions between
localized magnetic moments?5 and (ii) what is the pairing
mechanism, to what extent is the pairing symmetry determined
by nesting, and what is the actual symmetry and momentum
dependence of the pairing operator? In particular, what is the
role that the orbital degrees of freedom play in this context?

The origin of the magnetic state is being vigorously debated.
One proposal, based on fermiology, is the excitonic mechanism
in which electron-hole pairs are formed by one electron and
one hole from different FS’s nested with nesting vector Q. In
this context some studies disregard the orbital structure of the
bands3,6–8 while others stress the role played by their orbital
composition.9–15 Another approach focuses on the order of
the localized moments that develop in the presence of strong
Coulomb interactions5,16–18 and relies on ab initio results19,20

that suggest that the pnictides are moderately, rather than
weakly, correlated, a conclusion supported by photoemission
measurements indicating mass enhancements due to electron
correlations as large as 2–3.21

The pairing mechanism in the pnictides is also controver-
sial. Most of the pairing operators that have been proposed
in the literature either ignore the multiorbital characteristics
of the problem or consider Cooper pairs that are made from
electrons located at the same orbital. A majority of these

previous studies have been performed in the weak-coupling
limit. The original proposal of the s± pairing state dealt with
the overall symmetry of the pairing operator but without
distinguishing among the spatial vs. orbital contributions
to its particular form.3,4 Other authors22 have considered a
spin-fluctuation-induced pairing interaction and also assumed
that Cooper pairs are predominantly made of electrons in
the same orbital. A random-phase approximation (RPA)
analysis11 concluded that the pairing is, again, intraorbital,
both for the A1g (s-wave) and B1g (d-wave) symmetries.
Among the authors that have used the conceptually different
strong-coupling approach, some have studied effective single
orbital models5 while others incorporated two orbitals23 but
still considered only intraorbital pairing operators. The same
model was also studied under a mean-field approximation24

with the assumption that exchange takes place between spins
on the same orbitals and, again, only intraorbital pairs were
proposed.

Among the early first studies of multiband superconductors,
Suhl et al.25 considered two tight-binding bands, hypothet-
ically identified with s and d orbitals, and the effect of
weak electron-phonon interactions. Under these assumptions,
it was reasonable to expect that the Cooper pairs would be
formed by electrons belonging to the same band. However,
the actual orbital composition of the pairs was not addressed.
The interacting portion of the Hamiltonian was written in the
band representation and this model was proposed by analogy
with models used in the Bardeen-Cooper-Schrieffer (BCS)
theory, assuming that emission and absorption of a phonon
could occur in four ways. These four processes corresponded
to pair scattering within each of the two FS’s and pair hopping
from one FS to the other. This last process would occur if the
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exchanged phonon has enough momentum to allow the Cooper
pair to jump from an FS to the other, and it can occur even if
the orbitals do not hybridize to form the bands.26 In this case,
the expected pairing operator is the traditional on-site s-wave
state of the BCS theory, with a momentum-independent gap. In
principle, independent gaps may arise on the different FS’s25

unless the orbitals are hybridized by the symmetries of the
Hamiltonian, in which case the gaps will have to be related to
each other and obey the symmetries of the system.12

The previous discussion applies to superconductors driven
by the electron-phonon interaction. However, it is believed that
the most relevant interactions in the pnictides are the Coulomb
repulsion and Hund magnetic exchange. These interactions
are more easily expressed in real space and in the orbital
representation. In fact, the effective form of the Coulomb
interaction in the band representation is more complicated
than the expression provided by Suhl et al.25 for the electron-
phonon interaction. In particular, it has been shown6 that a
pair-hopping term, such as the one introduced by Suhl et al.,
occurs only if the orbitals get hybridized to form the bands. If
the orbitals are not hybridized, this type of term is not present
in the effective interaction Hamiltonian. In addition, when the
bands are made of hybridized orbitals, as is the case for the
iron pnictides,27 the actual orbital structure of the pairs needs
to be considered since, due to the Coulomb repulsion, on-site
pairing is not expected to occur, and the overall symmetry
properties of the pairing operators may be a function of their
spatial and orbital components.10,12

To understand the role that the orbitals play in the case
of electrons with strongly hybridized bands that interact via
the Coulomb repulsion, as believed to occur in the case of
the pnictides in the context of the magnetic scenario for
superconductivity, in this manuscript we present and discuss
Lanczos numerical, real-space Hartree-Fock mean-field, and
RPA studies of two different two-orbital models that both dis-
play identical Fermi surfaces. One of them is the well-known
and widely used two-orbital model for the pnictides9,10,12 based
on the two strongly hybridized degenerate dxz and dyz orbitals
of iron, while the second is a two-band “toy model” (dubbed
the s model) whose bands arise from two nonhybridized,
nondegenerate, s-like orbitals. The latter model has an FS
qualitatively similar to that of the pnictides. In both cases a
hole (electron) FS is located at the �/M (X/Y ) points of the
Brillouin zone (BZ). The hole and electron FS’s are connected
by nesting vectors (π,0) and (0,π ). The role that the nesting
and the orbitals play in the magnetic and pairing properties of
these models will be investigated and discussed here, in both
the weak- and strong-coupling regimes.

Besides its conceptual relevance, the results presented here
should also be framed in the context of recent bulk-sensitive
laser angle-resolved photoemission (ARPES) experiments28

on BaFe2(As0.65P0.35)2 and Ba0.6K0.4Fe2As2. The main con-
clusion of Ref. 28 is the existence of orbital-independent
superconducting gaps that are not expected from spin fluc-
tuations and nesting mechanisms but are claimed to be better
explained by magnetism-induced interorbital pairing and/or
orbital fluctuations. This is argued based on the observation
that the 3z2 − r2 orbital that forms one of the hole pockets
at the BZ center, but that does not have a nested partner
with the same orbital at the electron pockets, nevertheless

appears to develop a superconducting gap. Another interesting
experimental result that challenges the role of nesting in
the physics of the pnictides is a careful measurement of
the de Haas-van Alphen (dHvA) effect in BaFe2P2, the end
member of the series BaFe2(As1−xPx)2, indicating that this
nonmagnetic and nonsuperconducting compound displays the
best nesting of all the compounds in the series.29

The manuscript is organized as follows. In Sec. II the
models are introduced. The magnetic properties are presented
in Sec. III while the pairing properties are the subject of
Sec. IV. Section V is devoted to the conclusions.

II. MODELS

A. d model

The reference model that will be considered here is the
widely used two-orbital model9,10,12 based on the dxz (x) and
dyz (y) Fe orbitals of the pnictides. Since the two orbitals are
degenerate, an important detail is that the direction along which
each orbital is defined is actually arbitrary. Two directions
have been used in the literature: x,y,9,10,12 with the x and y

axes along the directions that connect nearest-neighbor iron
atoms, and X,Y ,4,30 with the X and Y axis rotated 45◦ with
respect to the (x,y) set. In terms of the dxz and dyz orbitals,
the tight-binding dispersion of the two-orbital model is given
by31

ξxy(k) = [−(t1 + t2)(cos kx + cos ky)

− 4t3 cos kx cos ky − μ]τ0

− (t1 − t2)(cos kx − cos ky)τ3

− 4t4 sin kx sin kyτ1, (1)

where τi , with i = 1,2,3, are the Pauli matrices and τ0 is the
2 × 2 identity matrix. The τi matrices act in orbital space. Note
that ξxy(k) must transform as the A1g representation of D4h;
in this representation τ0 transforms as A1g , τ1 as B2g , and τ3

as B1g . However, if the degenerate d orbitals are expressed
in terms of the (X,Y ) axes as (dX,dY ), then the tight-binding
dispersion becomes:30

ξXY (k) = [−(t1 + t2)(cos kx + cos ky)

− 4t3 cos kx cos ky − μ]τ0

− (t1 − t2)(cos kx − cos ky)τ1

− 4t4 sin kx sin kyτ3. (2)

Note that the XY basis is chosen just for the orbitals
while in real space the system of coordinates is still given
by (x,y). ξXY (k) also has to transform as A1g which means
that, when the orbitals are defined in the (X,Y ) basis, then τ1

transforms as B1g and τ3 as B2g . It can be shown that since τ1 is
the matrix that indicates interorbital electron hopping, this kind
of hopping happens between nearest-neighbors [next-nearest-
neighbors] in the (X,Y ) [(x,y)] representation.

As previously discussed, if the values of the parameters
are set to t1 = −1, t2 = 1.3, t3 = t4 = −0.85, and μ = 1.54
then the Fermi surface (shown in Fig. 1 together with the band
dispersion) for the tight-binding Hamiltonian is in qualitative
agreement with band structure calculations for the pnictides9

once folding to the reduced BZ is performed. Note that the
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FIG. 1. (a) Band dispersion and (b) Fermi surface for the half-
filled two-orbital d model for the pnictides, with the hopping
parameters introduced in Ref. 9.

system is half filled (two electrons per Fe site on average) and,
due to the orbital degeneracy, each orbital is half filled as well,
despite the fact that the bands are not equally filled.

An important characteristic of the two degenerate d orbitals
in this model is that, around the hole pockets, a spinor
describing the mixture of orbitals rotates twice on encircling
these FS’s. The inversion and time-reversal symmetry of the
twice-degenerate d bands ensures that at each k point it is
possible to choose real spinor wave functions that are confined
to a plane. The spinor has vorticity ±2 around the hole pockets
while there is no vorticity around the electron pockets.30 As
pointed out in Ref. 30, this topological characterization of the
hole and electron pockets is also a characteristic of all the
more realistic models for the pnictides that include additional
orbitals.

B. s model

Let us introduce now a two-orbital model with two
nondegenerate nonhybridized s-like bands, called s1(1) and
s2(2), with dispersion relations given by

ξs1 (k) = 2t1(cos kx + cos ky) + 4t2 cos kx cos ky − μ, (3)

and

ξs2 (k) = 2t3(cos kx + cos ky) + 4t4 cos kx cos ky − μ + �,

(4)

where μ is the chemical potential and � is the energy
difference between the two bands. The dispersions can also
be written in the basis (s1,s2), i.e., (1,2), using the τi matrices
as in the previous case:

ξS(k) =
[

(t1 + t3)(cos kx + cos ky) + 2(t2 + t4) cos kx cos ky

−μ + �

2

]
τ0 +

[
(t1 − t3)(cos kx + cos ky)

+ 2(t2 − t4) cos kx cos ky − �

2

]
τ3. (5)
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FIG. 2. (Color online) (a) Band dispersion and (b) Fermi surface
of the half-filled two-orbital s model given by Eq. (5) (red circles).
The continuous line is the FS for the two-orbital d model.

It is clear that here both τ0 and τ3 transform like A1g and,
for this reason, we call this model the s model. In Fig. 2, the
band dispersion [Fig. 2(a)] and the FS [Fig. 2(b), red circles]
are shown for the parameter values t1 = −0.05, t2 = 0.7, t3 =
−0.1, t4 = 0.3, � = 2.8, and μ = 1.95. The FS of the d model
is also shown (continuous black line) for comparison. They are
obviously very similar, and it is precisely the goal of this effort
to investigate what kinds of magnetic and pairing properties
emerge from these two models that have nearly equal Fermi
surfaces.

The hole pockets at the � and M points nest into the electron
pockets at X and Y , with nesting vectors (0,π ) and (π,0).
The system is half filled but the individual bands or orbitals
are not. Note that this is the case with the orbitals in the
multiorbital systems proposed for the pnictides, where nesting
occurs between electron and hole pockets at the FS but none
of the orbitals are exactly half filled.4,11

C. Coulomb interaction

The Coulomb interaction term in both Hamiltonians is the
usual one, with an on-site intraorbital (interorbital) Coulomb
repulsion U (U ′), a Hund coupling J satisfying the relation
U ′ = U − 2J for simplicity, and a pair-hopping term with
coupling J ′ = J .32 The full interaction term is given by

Hint = U
∑
i,a

ni,a,↑ni,a,↓ + (U ′ − J/2)

2

∑
i,a

ni,ani,−a

− J
∑
i,a

Si,a · Si,−a + J

2

∑
i,a

(d†
i,a,↑d

†
i,a,↓di,−a,↓di,−a,↑

+ H.c.), (6)

where d
†
i,a,σ creates an electron with spin σ at site i and orbital

a = x,y or 1, 2. Si,a (ni,a) is the spin (electronic density) of
the orbital a at site i.

To study computationally the interacting Hubbard Hamilto-
nian, three different many-body approaches will be used here:
(i) the Lanczos technique, (ii) the real-space Hartree-Fock
mean-field approximation, and (iii) the RPA. Although these
methods are well known, for completeness a brief description
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of these techniques is presented: (i) In the Lanczos formalism33

the interacting Hamiltonian is exactly diagonalized in a
small lattice. Taking advantage of the symmetries of the
Hamiltonian, such as translational invariance, spin inversion,
rotations, etc., it is possible to write the Hamiltonian matrix in a
block form which allows us to obtain the lowest-energy state in
each of the different Hilbert subspaces characterized by a given
momentum k, number of electrons, total spin projection Sz, and
irreducible representations of the D4h group. A comparison
of the energies of all these subspaces reveals the quantum
numbers of the ground state. In addition to the eigenvalues
of the Hamiltonian, the Lanczos algorithm also provides
the eigenvectors and, thus, the ground-state wave function
can be used to calculate several different observables. The
largest cluster size that can be diagonalized for the two-orbital
Hubbard model has eight sites since the Hilbert subspaces,
even using many symmetries, already have a large number
of states between 2 and 20 million for such a cluster. These
calculations are state of the art and have been carried out
using a Penguin 128 GB Altus 3600 computer. Thousands of
diagonalizations of the Hamiltonian were needed in order to
study the two models of focus in this publication, for several
values of the interaction parameters, exploring all the many
Hamiltonian blocks. (ii) Another technique employed here
is the real-space Hartree-Fock (HF) approximation that was
briefly described in Ref. 34. The four-fermion terms in the on-
site interaction portion of the Hamiltonian are decoupled using
local mean-field values that are calculated self-consistently. A
Hamiltonian matrix for the mean-field Hamiltonian can be
constructed and this matrix is exactly diagonalized. Clusters
with N = 64 sites can be easily studied with this technique,
which is still computationally demanding since the iterative
procedure used to solve the HF equations scales as (2N )4. The
HF Hamiltonian is too cumbersome to be reproduced in all
detail here, but to guide the readers into the analytical form
of its many terms the portion corresponding to the on-site
intraorbital Hubbard U repulsion is reproduced:

HU = U
∑
i,a

(〈ni,a,↑〉ni,a,↓ + 〈ni,a,↓〉ni,a,↑ − 〈ni,a,↓〉〈ni,a,↑〉

− 〈d†
i,a,↑di,a,↓〉d†

i,a,↓di,a,↑ − 〈d†
i,a,↓di,a,↑〉d†

i,a,↑di,a,↓

+ 〈d†
i,a,↑di,a,↓〉〈d†

ia↓di,a,↑〉). (7)

The rest of the terms in the on-site Hubbard interaction
have similar, but more complicated, expressions and they are
not reproduced here. (iii) Finally, the standard RPA technique
has also been employed. This diagrammatic method11 is often
applied to study Hubbard-like models and there is no need
to reproduce the details of the approximation here. Since the
interaction terms are treated perturbatively, this approach is
expected to work better in the weak-coupling regime.

III. MAGNETIC PROPERTIES

For a single-orbital model, the magnetic structure factor is
easily defined as

S(k) =
∑

r

eik.rω(r), (8)

with

ω(r) = 1

N

∑
i

m(i)m(i + r), (9)

where N is the number of sites of the lattice and

m(i) = ni,↑ − ni,↓ = d
†
i,↑di,↑ − d

†
i,↓di,↓, (10)

where m(i) denotes the net magnetization at site i.
In a multiorbital system the net magnetization at site i is

obtained in terms of the magnetization of each orbital a, and
it is given by

m(i) =
∑

a

ni,a,↑ − ni,a,↓ =
∑

a

(d†
i,a,↑di,a,↑ − d

†
i,a,↓di,a,↓).

(11)

While Eq. (11) characterizes the magnetization that is
measured in experiments such as neutron scattering, it is
natural to define generalized magnetic moments mab(i)30 given
by

mab(i) = d
†
i,a,↑di,b,↑ − d

†
i,a,↓di,b,↓. (12)

With this definition, a generalized form of the magnetic
correlation function will depend on four orbital indices:

ωabcd (r) = 1

N

∑
i

mab(i)mcd (i + r). (13)

Thus, it is possible to define orbital-dependent magnetic
structure factors given by

Sabcd (k) =
∑

r

eik.rωabcd (r). (14)

These orbital-dependent operators may arise from processes
as those depicted in Fig. 3(a), where having different orbitals
at the two vertices is possible if the orbitals strongly hybridize
to form a band.13

The total orbital magnetic structure factor can then be
defined as

STO(k) =
∑

a,b,c,d

Sabcd (k). (15)

Note that there are M4 orbital-dependent components of
the generalized magnetic structure factor, where M is the
number of active orbitals in the system. The magnetization
that is measured in neutron-scattering experiments is given by

(a) (b)

k k
q qa

b

d

c
k+q

νq q

μ μ
k+q

ν

FIG. 3. (a) Electronic process that gives rise to the orbital
components of the structure factor. (b) Same as shown in (a) but
in the band representation.
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Eq. (11), which, in terms of the components of the tensor mab,
becomes

m(i) =
∑

a

ni,a,↑ − ni,a,↓ =
∑

a

maa(i) = tr[mab(i)]. (16)

Since m(i) is a trace its value is independent of the basis
chosen to define the orbitals and it allows us to calculate the
experimentally measured local magnetization.

Note that m(i) is the operator that has to be considered
in order to construct the so-called homogeneous or diagonal
structure factor defined in terms of the diagonal (intraorbital)
magnetic moments maa(i) and given by11,12

SMO(k) = 1

N

∑
a,b,r,i

eik.rmaa(i)mbb(i + r) =
∑
a,b

Saabb(k).

(17)

SMO is the physical magnetic structure factor that has to be
calculated in the context of multiorbital systems to com-
pare with neutron-scattering results.10,12 Several authors have
pointed out the existence of the generalized components of the
magnetic susceptibility both in the orbital representation11,35

and in the band representation.8 It has also been pointed
out that an orbital-transverse density-wave- (OTDW) ordered
state characterized by the nonhomogeneous components of the
magnetization tensor may develop in multiorbital systems,36

an issue that will be further explored and discussed in the
present work.

A. Noninteracting case

To understand the relationship among STO, SMO, and the
properties of the FS of the system, it is illuminating to consider
the noninteracting case that can be easily studied in momentum
space. Via a Fourier transform of d

†
i,a,σ and di,a,σ , Sabcd in

Eq. (14) can be written as

Sabcd (k) =
∑

p,q,σ,σ ′
(−1)σ+σ ′

d†
q,a,σ dq+k,b,σ d

†
p,c,σ ′dp−k,d,σ ′ .

(18)

In momentum space it is natural to use the band representation
in which

Sabcd (k) =
∑

p,q,σ,σ ′,μ,μ′,ν,ν ′
(−1)σ+σ ′

× 〈μ|a〉q〈b|μ′〉q+k〈ν|c〉p〈d|ν ′〉p−k

× d†
q,μ,σ dq+k,μ′,σ d

†
p,ν,σ ′dp−k,ν ′,σ ′ , (19)

where d
†
p,ν,σ creates an electron with momentum p and z-spin

component σ at band ν, while 〈ν|a〉p is the matrix element for
the transformation from orbital to band representation.

In the band representation, the electronic processes that
contribute to the magnetic correlations are shown in Fig. 3(b).
Since the electronic band cannot change as the electron created
at the right vertex is destroyed at the left vertex, in the band
representation we can define band-dependent components of
the structure factor given by

Sμννμ(k) =
∑
p,q,σ

d†
q,μ,σ dq+k,ν,σ d†

p,ν,σ dp−k,μ,σ , (20)

where the Greek indices label the bands. A total structure factor
can be defined in terms of Sμννμ as

STB(k) =
∑
μ,ν

Sμννμ(k). (21)

Moreover, the homogeneous or diagonal magnetic structure
factor SMB, analogous of SMO, can be defined as

SMB(k) =
∑

μ

Sμμμμ(k), (22)

since in the band representation Sμμνν = 0, if μ �= ν. Note
that the band representation is the natural starting point in
approaches based on fermiology.3,6

In the noninteracting case being considered in this section,
it is easy to show that

Sμννμ(k) = 2
∑

q

fμ(q)[1 − fν(q + k)], (23)

where fμ(q) is the Fermi function for the band μ. We also
find that the components of the structure factor in the orbital
representation are given by

Sabcd (k) = 2
∑
q,μ,ν

〈μ|a〉q〈b|ν〉q+k

×〈ν|c〉q+k〈d|μ〉qfμ(q)[1 − fν(q + k)]. (24)

From the expressions in Eqs. (23) and (24) it can be shown that
STO = STB and SMO = SMB only if the orbitals do not hybridize
to form the bands, i.e., the matrix elements are the elements of
the identity matrix. In the case of a nonzero hybridization, the
structure factors in the band and orbital representations then
differ.

B. d model

Numerical Lanczos calculations for the homogeneous (or
diagonal) magnetic structure factor SMO have already been
discussed in the literature for the two-orbital d model, and
they indicate a tendency toward a magnetic stripe ordering
for the undoped case, characterized by peaks at k = (π,0)
and (0,π ) in SMO.12 This tendency is already apparent even
in the noninteracting case,10,12 as illustrated in Fig. 4(a),
where SMO calculated in a 16 × 16 cluster is shown with open
circles, along the directions (0,0) − (π,0) − (π,π ) − (0,0) in
the unfolded BZ. The broad peak at k = (π,0) is clear and it
can be compared with the curve denoted by the star symbols
in Fig. 4(b), where results for the

√
8 × √

8 cluster that can be
studied numerically exactly (with the Lanczos algorithm and
for any value of the Hubbard couplings) are presented. This
same behavior is also apparent in the total orbital structure
factor STO(k) indicated by the diamonds in Fig. 4(a).

On the other hand, a calculation of the magnetic structure
factor using the band representation, i.e., SMB(k), indicated by
the squares in Fig. 4(a), shows a rather different behavior:
Instead of a clear peak at (π,0), there is a featureless
plateau around (π,0) that extends to (π/2,π/2). This example
demonstrates the importance of the matrix elements in Eq. (19)
that differentiate between SMO and SMB. In the noninteracting
case, both functions can be expressed in terms of the Fermi
functions as in Eqs. (23) and (24), allowing us to conclude that
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FIG. 4. (Color online) (a) Magnetic structure factors, total and
homogeneous as indicated, for the noninteracting two-orbital d model
on a 16 × 16 lattice. (b) Homogeneous orbital magnetic structure
factor SMO(k) for the interacting case with J/U = 0.25 and at the
indicated values of U . The results were obtained numerically using an
eight-site cluster and the Lanczos method.y (c) Total orbital magnetic
structure factor STO(k) for the interacting case for the same parameters
and technique used in (b).

the peak at (π,0) arises from the matrix elements rather than
from purely nesting effects of the Fermi surfaces. Ignoring
the matrix elements, it is interesting to note that a feature at
(π,0) can also develop if all the components of the structure
factor in the band representation are considered and STB(k) is
calculated, as shown by the curve indicated with triangles in
Fig. 4(a).

The contribution of the band- and orbital-resolved com-
ponents of the structure factor in the noninteracting case are
presented in Fig. 5(a). The components of the structure factor
that contribute to SMO are Saabb with a (b) taking the values
x (y) and y (x) indicated by the diamonds in the figure, and
Saaaa (indicated by the circles and squares). It is clear from
the figure that the peak at (π,0) in SMO at the noninteracting
level is mostly due to the Saabb that arise from the nesting
of the two bands that contain the same orbital flavors due to
hybridization, while the components of the form Saaaa show
features also at (π,π ) since this wave vector also nests the hole
(electron) FS’s at � and M (X and Y ). It can be seen that the
nonhomogeneous components of the form Sabab (diamonds)
behave as Saabb in the noninteracting case and contribute to
form the peak at (π,0) in the total structure factor STO [triangles
in Fig. 4(a)]. For completeness, in Fig. 5(a) orbital-resolved
structure factors of the form Sabba (up-triangles) and Sabbb

(down-triangles) are also shown; Sabba increases the value of
STO at (π,0) while Sabbb provides a small negative contribution
to STO along the diagonal direction of the BZ. Similar results
were obtained for all the correlations in which three of the four
indices are the same.

In noninteracting single-orbital systems, as studied for the
cuprates, the spin and charge susceptibilities have the same
form for all values of nonzero momenta, and any features
in these functions arise from the nesting properties of the
Fermi surface. Naively, the same is expected in the case of
multiorbital models but, as discussed below, the hybridization
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FIG. 5. (Color online) (a) Orbital-resolved components of the
magnetic structure factor for the noninteracting two-orbital d model
on a 16 × 16 lattice. (b) Band- (orbital-) resolved components of the
magnetic structure factor for the noninteracting two-orbital s model
also on a 16 × 16 lattice. The index 1 (2) labels the lower (upper)
band.

of the orbitals plays a crucial role. In the d model, the peaks in
SMO appear to be associated with the nesting of the hole- and
electron-like Fermi surfaces. In the weak-coupling picture, it
is expected that magnetic order with Q equal to the nesting
moments stabilizes when repulsive Coulomb interactions are
added. Our Lanczos calculations for SMO and STO, in Figs. 4(b)
and 4(c), show that this is indeed the case.

The Lanczos calculated orbital magnetic structure factor
SMO(k), using a

√
8 × √

8 sites cluster, is shown in Fig. 4(b) for
different values of U and at J/U = 0.25. This structure factor
has a peak at k = (π,0) [and (0,π ) as well, not shown] that
becomes sharper as U increases, indicating a tendency toward
robust magnetic order. Mean-field calculations based on these
results, but extended to much larger systems, indicate that
actual magnetic order develops at a finite value of U .12,14 The
Lanczos-evaluated behavior of the SMO(k) peak at k = (π,0),
as a function of U , is shown in Fig. 6(a) for two different
values of J/U (0.05 and 0.25). The tendency toward a
robust magnetic state with increasing U and J/U is again
clear.

As previously stated, SMO is the magnetic structure factor
calculated in the literature for comparison with experiments,
but for completeness and for the sake of comparison with the
s-model results, in Fig. 4(c) we present the Lanczos calculated
values for the total generalized magnetic moment STO for the
d model as a function of U , for the case J/U = 0.25. It is
clear that for the d-model STO mimics the behavior of SMO.
An important question to ask is what are the components of
the orbital-resolved magnetic structure factor that drive the
development of a peak at Q = (π,0) [and (0,π )] when the
Coulomb interactions are active. In Fig. 7 partial sums over
selected components of the structure factor are shown with
summations performed over repeated indices. In Fig. 7(a) it
can be clearly observed that Saabb, whose sum over a and b are
indicated by the plus signs and the continuous lines in different
shades for the different values of the interaction, are the
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FIG. 6. (Color online) Orbital magnetic structure factor at wave
vector (π,0) calculated numerically (Lanczos). (a) Results for the
two-orbital d model as a function of the Coulomb repulsion U and
for the values of J/U indicated. (b) Same as (a) but for the s model.

components that drive that magnetic behavior. In fact, these are
the homogeneous components that contribute to the physical
magnetic structure factor SMO. It is interesting to note that
while

∑
a,b Saabb is equal to

∑
a,b Sabab in the noninteracting

system [Fig. 5(a)] the partial sum of the nonhomogeneous
component

∑
a,b Sabab [x symbols and dotted lines in Fig. 7(a)]

does not increase with U at Q while the partial sum
∑

a,b Saabb

clearly does.

C. s model

Let us now carry out a similar analysis but for the
two-orbital s model defined by Eq. (5). Since in this model
each band is defined by a single orbital, it is then clear
that SMO = SMB and STO = STB.37 Note that studies based on
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FIG. 7. (Color online) Orbital-resolved components of the total
structure factor (sums over repeated indices are implied): Saabb (plus
sign, solid line), Sabab (x, dotted line), and Sabba (asterisk, dashed
line) for the values of U indicated, obtained numerically (Lanczos)
at J/U = 0.25 using an eight-site cluster for (a) the d model and (b)
the s model.

fermiology assume that if hole and electron FS’s are nested via
a momentum vector Q, then spin-density wave order will arise
from a logarithmic instability that develops in the spin response
at Q and is stabilized by the Coulomb interaction.3,6 In this
scenario the spin-density wave originates from the formation
of particle-hole pairs, excitons, belonging to the electron and
hole FS’s (excitonic mechanism).6 Our goal is to investigate
whether this mechanism is valid for the s model.

The magnetic structure factor SMO in the noninteracting
limit, denoted by the squares in Fig. 8(a), does not show the
features expected from the nesting of the two Fermi surfaces at
momentum Q. The structure factor is actually rather flat on all
the BZ, vanishing at k = (0,0) and (π,π ). These results are not
what would have been expected from the nesting properties.

Note that the results for SMO in the noninteracting s model
[squares in Fig. 8(a)] are actually identical to the results
for the homogeneous structure factor in the d model in the
band representation SMB [indicated by squares in Fig. 4(a)],
since both systems have the same FS. However, note how
the results for the d model in the orbital representation differ
[indicated by circles in Fig. 4(a)]. This is due to the effect
of the matrix elements that result from the hybridization
of the orbitals, which play a crucial role in the magnetic
properties of the system. This effect can be more clearly
appreciated when the interactions are added. The behavior
of the peak in SMO(k) at k = (π,0) was calculated with the
Lanczos method applied to the s model by varying U and at
different values of J/U using an N = 8 sites tilted cluster.
In Fig. 6(b) it can be observed that for values of J < 0.1U

the peak in SMO eventually vanishes. On the other hand, for
J � 0.1U , a rapid increase in the peak’s magnitude suddenly
occurs at a value of U that decreases as J/U increases. The
increase of the peak at (π,0) with increasing U is contrasted
with the behavior of the feature at (π/2,π/2) displayed in
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FIG. 8. (Color online) (a) Magnetic structure factors (total and
homogeneous) as indicated for the noninteracting two-orbital s model
using a 16 × 16 lattice. (b) Homogeneous orbital or band magnetic
structure factor SMO(k) for the interacting case with J/U = 0.25 at
the indicated values of U . The results were obtained numerically via
the Lanczos method using an eight-site cluster. (c) Total orbital or
band magnetic structure factor STO(k) for the interacting case with
the same parameters as in (b).
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FIG. 9. (Color online) Mean-field calculated orbital- or band-
resolved magnetic order parameters for the s model, as a function of U

and for the indicated values of J/U . (a) Total homogeneous magnetic
order parameter m = m11 + m22; (b) m11; (c) m22; (d) m12 = m21.

Fig. 8(b). Examination of the numerical (Lanczos) ground state
indicates that, at this point, the Hubbard interaction is strong
enough to hybridize the two bands and develop magnetic stripe
order.

Based on the numerical results discussed above, a Hartree-
Fock mean-field calculation was performed, following techni-
cal aspects already discussed briefly in previous literature.14,34

By this procedure we found that the total (homogeneous)
magnetization m shown in Fig. 9(a) mimics the behavior of
SMO(π,0). The transition to the magnetically ordered state is
very rapid, resembling a first-order transition. We observed
that MF magnetic order develops only if J � 0.1U , which is
in agreement with the Lanczos results shown in Fig. 6(b). The
mean-field results also indicate that a full gap characterizes
the magnetic state that is then an insulator as it can be seen
from the MF calculated spectral functions A(k,ω) displayed
in Fig. 10(a). It is clear that the hybridization of the original
bands or orbitals due to the Coulomb interaction is very strong
and the band structure has been totally reconstructed. This
behavior can be understood in the real-space representation.
In order to develop magnetic stripes in the half-filled system,
it is necessary to have a net magnetic moment on each site.
In the d model, each orbital is half filled and thus contains a
spin-1/2 that can easily be polarized by the interaction. In the s

model, on the other hand, the orbitals correspond to the bands,
and one orbital is thus almost filled while the other is almost
empty. Then, there are far fewer magnetic moments that can
be polarized.

Thus, we observe that in the s model the peak at Q in the
magnetic structure factor does not develop from the nesting
of the FS but from the Coulomb interaction, and it occurs
fairly suddenly and at a robust value of U � 4 for the hopping
parameters used here. Thus, while nesting appears to be a
needed condition for the development of the peak in the
magnetic structure factor, it is not a sufficient condition. The
hybridization of the orbitals needs to be present such that
the matrix elements allow the peak to emerge at sufficiently
strong coupling. In fact, it is necessary that the bands that

FIG. 10. (Color online) Intensity of the mean-field calculated
spectral functions A(k,ω) as a function of ω − μ and k for the s

model: (a) in the stripe magnetic phase for U = 5 and J/U = 0.25;
(b) in the phase with orbital-transverse spin order for U = 2.5 and
J/U = 0.25.

are connected by the nesting vector Q share the same orbital
flavor. If this occurs via hybridization, magnetic order can
develop at relatively weak coupling, but if this is not the
case, the Coulomb interaction would induce magnetic order
only in the strong-coupling regime, as we have verified by
studying the s model. In this case, the magnetic transition is
also a metal-insulator transition, as observed at least within
the mean-field approximation. The d-orbital model, on the
other hand, is known to display an intermediate metallic
magnetic phase.14 Thus, the present results indicate that the
s and d models develop similar magnetic behavior only in
the strong-coupling regime while in weak coupling, despite
the nearly identical Fermi surfaces, both models have quite
different ground states.

1. Orbital-transverse spin order

While the analysis of the results for the s model presented
above indicates that, despite the nesting of the electron and
hole FS’s, no magnetic order, as defined by the homogeneous
operator, develops in weak coupling, it is instructive to analyze
the behavior of the nonhomogeneous components and the
total magnetic structure factor STO. The noninteracting values
of STO on a 16 × 16 lattice are indicated by the triangles
in Fig. 8(a). There is a feature at (π,0) arising from the
contribution of the interband components of the form Sabba ≡
Sμννμ, shown by the triangles and diamonds in Fig. 5(b). These
are the components of Sabcd that contribute to the development
of the maximum at Q = (π,0) [and (0,π )] because the nesting
at Q is between FS’s defined by different bands. However, these
type of terms are not part of the definition of the homogeneous
structure factor SMB. On the other hand, the components of
the form Saaaa , indicated with circles and squares in Fig. 5(b),
have a very flat shape in all the BZ and do not produce a
sharp feature. Any other combination of orbital indices does
not contribute to STO as shown in Eq. (23).

The effect of the Coulomb interactions on the feature at
(π,0) in STO has been obtained with Lanczos calculations
and it can be seen in Fig. 8(c). The peak slowly increases
as U increases from 0 to 4. Note that for the same range
of values of U the peak in SMO shown in Fig. 8(b) does
not change. The obvious question is whether this behavior
indicates a novel kind of order in multiorbital systems.

094519-8



ROLE OF DEGENERACY, HYBRIDIZATION, AND . . . PHYSICAL REVIEW B 84, 094519 (2011)

The answer is provided via our MF approach that allows
us to evaluate the components of the magnetization mab.
The homogeneous magnetization m displayed in Fig. 9(a)
is obtained as the sum of the intraorbital magnetizations
m11 and m22 shown in Figs. 9(b) and 9(c). Interestingly, we
found that the nondiagonal components m12 = m21 develop
finite values while the diagonal components are zero for
values of J/U > 0.1 as shown in Fig. 9(d). At the MF level
we can study the real space configuration associated to this
finite-order parameter. We have observed that the orbital spins
are disordered, which is expected by the lack of features in
SMO(k), but there are ordered generalized spins Gab(i) defined
as

Gab(i) = d†
i,a,α �σα,βdi,b,β , (25)

where �σ are the Pauli matrices and the orbital indices a �= b.
In Fig. 11 we show two configurations of G12(i) that provide
the MF ground state associated with the peak in STO at (π,0)
[and (0,π )] when m12 is finite. Figure 11(a) shows a flux
configuration that generates peaks at (π,0) and (0,π ) in STO

and Fig. 11(b) shows a stripe configuration that produces a
peak at (0,π ). The peak at (π,0) is generated by a companion
configuration rotated by π/2. Flux and stripe configurations
have energies very close to each other and the actual ground
state depends on the parameters.38

The new phase hinted at by the Lanczos calculations
and stabilized in the MF calculations is insulating. The MF
calculated spectral functions are shown in Fig. 10(b). A full gap
has developed at the FS, indicating that this order, if realized,
would be observed with ARPES measurements. On the other
hand, neutron-scattering experiments would not detect it. This
can be seen by performing a rotation in orbital space given
by36

d
†
i,±,σ = 1√

2
(d†

i,1,σ ± d
†
i,2,σ ). (26)

In this new basis the schematic representations of the spins
are shown in Fig. 12. It is clear that while the homogeneous
spins in the orbitals + (black dots) and − (white dots) are
ordered, the net spin at each site is 0 and, thus, neutron-
scattering experiments will not detect the order because there

(b)(a)

FIG. 11. Schematic representation of the real-space mean-field
calculated ground states for the s model when m12 is nonzero. (a)
Flux phase; (b) stripe phase. The dots indicate the sites and the arrows
represent the MF value of the generalized spin G12(i) defined in the
text.

(b)(a)

FIG. 12. Schematic representation of the real-space mean-field
calculated ground states for the s model when m12 is nonzero: (a) flux
phase; (b) magnetic stripe phase. The black and white dots represent
the orbitals + and − at each site and the continuous and dashed
arrows represent the MF value of the spin at each orbital.

is no finite local magnetization. These phases appear to be
a realization of the orbital-transverse density-wave (OTDW)
order proposed in Ref. 36.

Summarizing, a careful analysis of the small-cluster ground
states obtained via Lanczos techniques, and with mean-field
approximations in larger clusters, highlights the important
role that the orbital composition plays in the development
of magnetic order.

For the s model, it is illuminating to consider the behavior of
the total magnetic structure factor STO, see Fig. 8(c), calculated
numerically as the interactions are increased. There is a weak
increase of STO at Q before the sudden jump at U = 4. The
behavior of the resolved components displayed in Fig. 7(b)
shows that for 0 � U � 4 the partial sum over a and b

of the nonhomogeneous components Sabab (x symbols and
dotted line) and Sabba (asterisk symbols and dashed lines)
increases in value at (π,0) indicating the stabilization of the
orbital-transverse spin phase. For U > 4 a sudden increase
of the sum of the homogeneous components Saabb (plus
symbols and continuous line) develops, the nonhomogeneous
components start to decrease, and homogeneous magnetic
order is established.

D. Weak coupling: RPA analysis

Additional insight into the weak-coupling behavior of the
d and s models can be obtained via the diagrammatic RPA
method. Using this technique, the magnetic susceptibility
χabcd (k,iω) was calculated,11,13 and the static structure factor
was obtained by integrating the results over ω.39 In Fig. 13(a),
the RPA-calculated diagonal or homogeneous structure factor
for the d model is presented. The noninteracting result [in
agreement with the results indicated by the circles in Fig. 4(a)]
are denoted by the dashed line, while results at U = 2.64, the
coupling strength where divergent behavior is about to occur
for the case J/U = 0.25, are indicated by the solid line. In
these results the peak at (π,0) is very prominent both with and
without the Hubbard interaction on.

The same calculation performed for the s model, presented
in Fig. 13(b), gives rather different results. The flat behavior
in the noninteracting case (dashed line), in agreement with the
curve indicated by squares in Fig. 8(a), is replaced within the
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FIG. 13. (Color online) RPA calculated magnetic structure factors
for J/U = 0.25, at the values of U indicated (full line). The nonin-
teracting results are indicated with dashed lines. (a) Homogeneous
magnetic structure factor in the d model. (b) Same as shown in (a)
but for the s model. The arrow indicates the peak that grows the most
as the critical U is reached. (c) Generalized magnetic structure factor
for the d model. (d) Same as shown in (c) but for the s model.

RPA by a curve (continuous line) that develops weak features
at incommensurate values of the momentum. Note that there
were no precursors of these features in the noninteracting
limit. Eventually the peak the closest to the � point along
the diagonal direction of the BZ, indicated with an arrow in
the figure, was found to diverge when U becomes larger than
2.67 for J/U = 0.25. This appears to be an illustration of a
case in which RPA calculations indicate magnetic behavior that
is unrelated to nesting properties. The RPA results show that
an excitonic weak-coupling picture in which magnetic order
characterized by the nesting momentum Q is expected to occur
can be misleading if the orbital composition of the bands is
not incorporated into the discussion. In the excitonic picture,
the expectation is that the Coulomb interaction will allow
the formation of electron-hole pairs with the electron (hole)
in the electron (hole) Fermi surface. Since SMO incorporates
intraorbital electron-hole pairs, an RPA response requires that
the nesting vector connects parts of the electron and hole
bands that contain the same orbital flavor. This is the case
in the d model where, even in the weak-coupling regime, the
(π,0) magnetic-stripe state with two electrons with parallel
spins at every site of the lattice has the largest weight in
the ground state according to our Lanczos numerical studies.
Since both orbitals are degenerate, the energetic penalization
for populating both orbitals is U ′ and there is a gain given
by J if both spins are parallel. As discussed before, in the s

model, on the other hand, the orbitals are nondegenerate and,
thus, in addition to U ′ there is an energy � of penalization
when two electrons are located in different orbitals at the same
site. This energy can be larger than the gain obtained from J

by having parallel spins or than the U penalization that arises
from introducing both electrons in the same orbital. Then, a
magnetic “stripe” state can only develop when U is comparable
to the splitting �. This regime, which develops in strong
coupling according to our Lanczos and MF calculations, is not
captured by the weak-coupling RPA method. However, it will

be shown that RPA is effective at finding the orbital-transverse
spin state presented in the previous section if the generalized
structure factor STO is calculated.

The values of STO obtained with RPA are presented in
Figs. 13(c) and 13(d) for the d and s models, respectively. Both
develop a peak at the nesting wave vector. The generalized
structure factor takes into account electron-hole pairs formed
by an electron and a hole in different bands that are allowed
to have different orbital flavors. This is the reason why a
peak develops now in both cases. While in the case of the
d model the behavior of STO mimics SMO and the divergence
in both occurs at the same value of U (slightly above 2.64
for J/U = 0.25), indicating that the stripe-magnetic order
is the cause, in the s model, the peak in STO develops at a
lower value of U (U = 1.72 for J/U = 0.25) and it results
from the ordering revealed by the inhomogeneous components
S1221 and S2112 of the structure factor, i.e., orbital-transverse
spin order as discussed in the previous section. In this new
light, we see that the divergence in SMO should be disregarded
since it occurs for a much larger value of U than the
divergence in STO. These results show that if all the elements of
the susceptibility tensor are considered, RPA calculations are
able to determine the development of new ordered phases that
can develop in multiorbital systems. Conversely, in multior-
bital systems in which orbital-transverse order develops, RPA
calculations using only the homogeneous susceptibility may
lead to unphysical results.

E. Strong-coupling regime

In the regime where the coupling U is sufficiently strong
such that even in the s model it is energetically favorable
to locate two electrons with parallel spins at the same site
(and in different orbitals), both the s and d models can be
mapped into effective t − J − J ′ models and an insulating
state with magnetic stripes can occur. In this case, the Hubbard
repulsion has effectively hybridized both bands causing large
distortions and actually opening a full gap [see Fig. 10(a)].
In this strong-coupling regime both models appear to have
similar properties, but an insulating magnetic behavior does
not reproduce the experimental behavior observed in several of
the undoped iron pnictides (such as the 1111 and 122 families).
However, this regime could be applied to the chalcogenides:
if U is sufficiently strong the magnetic behavior that develops
in the strong-coupling limit is more related to the hopping
parameters and superexchange than to the weak-coupling
nesting properties of the Fermi surface. While the values of the
hopping parameters in the Hamiltonian are crucial to achieve
nesting in weak coupling,35 systems in which nesting is not
perfect can develop stripelike magnetic order if they map into
a t − J − J ′5 model in the strong-coupling limit such as in the
case of the three-orbital model for the pnictides.15

The results in this section indicate that in the case of the
pnictides, even if the five d orbitals are considered, the xz

and yz orbitals are the most likely to produce the strongest
contribution to the metallic stripe magnetic order at weak or
intermediate values of the Hubbard interaction because they
are the major constituents of the FS’s with better nesting and
because they are degenerate and, thus, there is no energy �

that needs to be overcome by the interaction. This is apparent
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FIG. 14. (Color online) (a) Fermi surface with its orbital com-
position for the case of a three-orbital model for the pnictides. (b)
Mean-field calculated orbital-resolved magnetization for the same
three-orbital model. The figure was taken from Ref. 15 for illustration.

in the three-orbital model for the pnictides, where a mean-field
calculation shows that magnetic order develops at a finite value
of U [see Fig. 14(b)].15 In Fig. 14(a) it can be observed that
the orbital with the best nesting associated with Q = (π,0)
is the yz one, indicated by the continuous line. A mean-field
calculation of the orbital-resolved magnetization maa for a =
xz, yz, and xy shows that myz,yz grows very rapidly at the
lowest value of U . The magnetizations for the other orbitals
develop as U hybridizes and distorts the original bands. Thus,
in the intermediate U regime when magnetism develops, the
xz and yz orbitals are the ones that would develop the stronger
magnetization (albeit for different values of Q), giving rise
to a magnetic metallic phase. Thus, nesting seems to drive
the magnetization of the xz/yz orbitals while the additional
orbital hybridizations that develop due to the reconstruction of
the FS then drives the smaller magnetization in the remaining
orbitals.

IV. PAIRING SYMMETRIES

Regarding the symmetry of the pairing operators corre-
sponding to the models analyzed here, previous numerical
calculations have indicated competition among the A1g , B2g ,
and Eg states in the d model,12,40 as shown in Fig. 15(a). The Eg

states correspond to a p-wave spin-triplet state that becomes
destabilized on the addition of binding-enhancing Heisenberg
terms.40 The favored pairing operators with the symmetry
A1g are all trivial in their orbital composition, i.e., they are
intraorbital with the form D†σ0D, where D† = (d†

k,x,↑,d
†
−k,y,↓)

in the (x,y) basis, and they remain intraorbital in the (X,Y )
basis. However, the B2g pairing operators have a nontrivial
orbital composition given by D†σ1D in the basis (x,y),
indicating that the pairs are made of electrons in the two
different orbitals. In the (X,Y ) basis the B2g pairing operator
becomes D′†σ3D

′ with D′† = (d†
k,X,↑,d

†
−k,Y,↓). Thus, in the

(X,Y ) representation the B2g pairs are intraorbital but there is
an important sign difference between the pairs in the different
orbitals that makes the orbital contribution intraorbital but
nontrivial. It is interesting to observe that the intraorbital B1g

state found with RPA calculations in the five-orbital model for
the pnictides11 would become interorbital in the (X,Y ) basis.

The results for the s model regarding pairing proper-
ties differ from those in the d model. Following previous

0 2 4 6 8 10
U

0

0.1

0.2

J/
U

0 2 4 6 8 10
U

0

0.1

0.2

J/
U

(a) (b)

MOI

Binding

FIG. 15. (Color online) (a) Relative symmetry between the
undoped and the electron-doped ground states for the case of the
d-orbital model, varying J/U and U . The results were obtained
numerically via the Lanczos method using a small cluster with
N = 8 sites (and following steps already discussed in previous
literature).10,40 The circles indicate states with Eg symmetry, squares
correspond to B2g , and diamonds represent A1g symmetric states.
(b) Same as shown in (a) but for the s model with the triangles
denoting B1g symmetry. In the region above the continuous line the
two added electrons form a bound state. The dashed line indicates
the boundary for the stability of the magnetically ordered insulating
(MOI) region in the undoped state.

investigations,10 using the Lanczos method we have calculated
the relative symmetry between the undoped (number of
electrons Ne = 16) and electron-doped (Ne = 18) states, as
an indicator of the possible pairing symmetry in the bulk
limit. More specifically, the ground state in the subspace of
16 and 18 electrons was obtained with the Lanczos technique
described in Sec. II C. Since the diagonalizations are carried
out in subspaces of the Hilbert space expanded by states
that transform according to a well-determined irreducible
representation of the group D4h, then it is simple to determine
the relative symmetry between the ground states for 16 and
18 electrons. The results are presented in Fig. 15(b), varying
U and J/U . For small values of U and J/U the doped
ground state has symmetry A1g in agreement with the d model,
although in a different regime of couplings. Increasing U and
J/U , the s-model ground state switches to the Eg symmetry,
i.e., p wave. This p symmetry arises from the spatial location
of the electrons since the orbital contribution is trivial. We have
observed that in the small cluster studied here the spin-triplet
state with k = (0,0) is almost degenerate with a spin-singlet
state with k = (π,π ). The possibility of having a spin-singlet
p-wave state with wave vector k = (π,π ) has been previously
discussed long ago in the context of the single-orbital Hubbard
model.41 In the present case, we need to remember that k is a
pseudomomentum and in the folded representation k = (π,π )
actually maps into (0,0) so the actual Cooper pair, if stabilized,
has zero center-of-mass momentum, but the components of
the pair belong to bonding and antibonding bands that could
become hybridized for the large values of the interactions
needed to stabilized these states. As indicated in the figure,
it was also found that the p states show binding in the small
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system studied here. In addition, a small region of bound states
with B1g symmetry is found at even larger couplings. While
in the d model our numerical results indicate that the orbital
degree of freedom plays a crucial role in the symmetry of the
pairing states, we observe that this is not the case in the s model.
This result seems to indicate that interorbital Cooper pairs
are likely to be present in multiorbital systems with strongly
hybridized bands as is the case for the pnictides.

Understanding more deeply why the s model develops
its particular pairing properties is at this point unnecessary
since the model simply provides an illustration of a system
with a similar FS as the d model, and the goal of this
work was to show that the orbital composition of the bands
plays a crucial role in determining the symmetry of the
doped states. The examples that have been discussed here
clearly show that models with the same Fermi surface and the
same interactions can have very different pairing properties
depending on the degree of hybridization of the orbitals. It
also seems, according to the present results, that the relevance
of the orbital degree of freedom in determining the pairing
symmetry is also influenced by the degree of hybridization
among those orbitals.

V. CONCLUSIONS

To summarize, numerical and analytical calculations were
performed in order to compare the properties of two-band
models with identical FS’s and interactions but differing in
the degree of hybridization of the orbitals to form the bands.
Despite the nesting properties of the FS’s it was discovered
that both models have similar magnetic (insulating) ground
states in the strong-coupling limit, but they differ in weak
and intermediate coupling. The s model offers an example
in which, despite the nesting of the FS and the presence of
Coulomb interactions, magnetism does not develop in weak
coupling. However, it was discovered that, instead, as a result
of the nesting in weak coupling, the Coulomb interaction
stabilizes an orbital-transverse spin-ordered state with no local
magnetization. This state is insulating and is characterized by
a gap that could be observed in ARPES experiments. However,
due to the lack of local magnetization, neutron-scattering
experiments would not detect the development of “generalized
spin order.” In fact, standard RPA calculations in the s model
lead to incorrect results such as incommensurate magnetic
order in the physical homogeneous channel. However, when
the nonhomogeneous components of the susceptibility are
taken into account, RPA reveals the existence of the orbital-
transverse spin phase for values of U lower than the ones
needed to observe the unphysical magnetic state. It is clear that
the physical (homogeneous) magnetic structure factor depends
strongly on the orbital flavor of the bands and for this quantity
to develop a peak in weak coupling it is necessary that the

portions of the FS connected by nesting have the same orbital
flavor.

The possibility of “hidden” magnetic ordering in the pnic-
tides has been proposed by several authors42–44 as an expla-
nation for the unexpectedly low value of the magnetization in
several of these materials. The hidden order proposed by these
authors was “diagonal,” as the configurations we presented in
Fig. 12 after transforming our nondiagonal results into a rotated
orbital basis. However, in multiorbital systems with more than
two orbitals, it may be necessary to consider the nondiagonal
order as well. In theoretical and analytical calculations these
nondiagonal hidden orders are revealed by considering all
the components, homogeneous and inhomogeneous, of the
magnetic susceptibility. On the experimental side, ARPES can
detect gaps that are opened due to the “hidden” magnetic order
but the traditionally used techniques to detect homogeneous
magnetic order, such as neutron scattering, will fail due to the
lack of a local magnetization.

We also found indications of quenching of the orbital
degree of freedom in systems with nonhybridized orbitals.
The orbitals do not appear to play a role in determining the
symmetry of the pairing states. This degree of freedom, though,
is crucial in systems with hybridized orbitals. In the case of
the pnictides in particular, we have shown that the ground
states with d symmetry found in the literature in models for
the pnictides, such as the B1g , can be made interorbital by
changing the basis in which the degenerate xz and yz orbitals
are defined.

The results provided by this work may explain why the end
member of the series BaFe2(As1−xPx)2 is nonsuperconducting
despite displaying the best nesting of all the compounds in the
series.29 If superconductivity necessitates magnetic fluctua-
tions they may not be sufficiently strong in this compound if
there is no good matching between the flavor of the orbitals in
the nested bands.

Finally, our results confirm the perception expressed in
the analysis of recent photoemission experiments28 that the
weak-coupling nesting mechanism would not be applicable
if, indeed, a hole-pocket band dominated by the orbital
3z2 − r2 (with no nesting partner in the electron-pocket
band) develops a robust superconducting gap. Confirming and
then understanding the results of those recent photoemission
experiments is very important for the clarification of several
intriguing issues in the challenging physics of the pnictides.
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