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Pairing symmetries of a hole-doped extended two-orbital model for the pnictides
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The hole-doped ground state of a recently introduced extended “t-U -J ” two-orbital Hubbard model for the
Fe-based superconductors is studied via exact diagonalization methods on small clusters. Similarly as in the
previously studied case of electron doping [A. Nicholson et al., Phys. Rev. Lett. 106, 217002 (2011)], upon hole
doping it is observed that there are several competing pairing symmetries, including A1g , B1g , and B2g . However,
contrary to the electron-doped case, the ground state of the hole-doped state has pseudocrystal momentum
k = (π,π ) in the unfolded Brillouin zone. In the two Fe-atom per unit cell representation, this indicates that the
ground state involves antibonding, rather than bonding, combinations of the orbitals of the two Fe atoms in the
unit cell. The lowest state with k = (0,0) has only a slightly higher energy. These results indicate that this simple
two-orbital model may be useful to capture some subtle aspects of the hole-doped pnictides, since calculations
for the five-orbital model have unveiled a hole pocket centered at M [k = (π,π )] in the unfolded Brillouin zone.
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I. INTRODUCTION

The detailed study of the recently discovered high criti-
cal temperature superconductivity (HTCS) in the iron-based
pnictides and chalcogenides1 continues providing important
information to understand the still puzzling mechanism that
drives this remarkable phenomenon. Experiments indicate
that these Fe-based materials share many properties with
the high-Tc cuprates,2 such as magnetically ordered parent
compounds3 and superconducting states stabilized by either
electron or hole doping.1 However, there are also remarkable
differences, such as the fact that the parent compounds, at least
for the pnictides, are (bad) metals rather than Mott insulators.
Moreover, several of the iron d orbitals are active at the
Fermi surface (FS) as opposed to the case of the cuprates,
where just the copper dx2-y2 orbital plays the major role.
While it has been clearly established that the superconducting
pairing operator has d-wave symmetry in the case of the
hole-doped cuprates,4 the symmetry of the pairing operator
in the pnictides is still controversial: surface-sensitive angle-
resolved photoemission (ARPES) studies5 indicate that full
nearly-momentum-independent gaps open on all FS pockets,
compatible with the s± state.6 However, several other experi-
ments testing bulk properties provide results compatible with
nodal superconductivity.7

Reliable theoretical studies are difficult to implement for
the complex multiorbital models needed for these materials
without making explicit assumptions about the ground-state
properties or about the mechanism and strength of the pairing
interactions. Under the assumption of a magnetically driven
superconducting instability, the random-phase approximation
(RPA) is often applied in this context, providing indications
that several pairing channels, mostly A1g and B1g , are in
competition in this type of compounds.8 However, RPA relies
on a particular subset of Feynman diagrams and it is a
weak-coupling approach. On the opposite extreme, strong-
coupling studies have also been performed. Depending on the
particular model used, some authors have found evidence of

pairing with B2g symmetry,9 while others have found a variety
of competing states.10 A complementary approach to these
previous investigations is to perform an exact diagonalization
(ED) of the model Hamiltonians, allowing us to solve the
problem exactly for any value of the interaction. However,
since the Hilbert space grows exponentially with the system
size, this method can be implemented only in very small
clusters and with a reduced number of active Fe orbitals. This
ED approach has been recently applied by the authors and
collaborators to the study of an electron-doped two-orbital
Hubbard model, and in that effort the presence of competing
pairing states was observed as the strength of the coupling
parameters was varied.11–13

An important characteristic of the widely studied Hubbard
models for the pnictides/chalcogenides is that they are not
particle-hole symmetric. On the experimental side, super-
conductivity has been found both upon electron and hole
doping, but it seems that hole-doped materials belonging to the
122 family are more suitable for the use of surface-sensitive
techniques, while electron-doped materials belonging to the
1111 family are more easily studied with bulk techniques.5,7

Then, it is natural to wonder whether a potential source of the
differences in the experimental results regarding the pairing
symmetries may arise from the nature of the dopants. For this
reason it is important to study theoretically the properties of
multiorbital Hubbard models under both electron and hole
doping. Previously, such a comparative analysis has been
performed employing the RPA method applied to a five-orbital
Hubbard model.14 For the parameter range studied in that
case (weak coupling), a pairing state with A1g symmetry was
observed in both cases. The state found has nodes on the
electron pockets in the electron-doped case, but upon hole
doping an extra hole pocket at the M = (π,π ) point in the
Brillouin zone leads to the removal of the nodes and the
development of a nodeless s± state.14

The goal of the present publication is to study the most
favorable pairing channels of a two-orbital Hubbard model
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using small-cluster exact diagonalization techniques (namely,
the Lanczos algorithm) for the case of hole doping and to
contrast the results against those found for the case of electron
doping of the same model that have been recently reported.11–13

To reduce the severe constraints imposed by the small size of
the clusters that can be diagonalized in present day computers,
a simple generalization of the Hubbard model for the pnictides,
previously introduced for the study of the electron-doped
case,11 will be here applied. For this purpose, Heisenberg “J ”
terms will be added to the original Hubbard model to enhance
spin order and pairing tendencies, but without projecting out
doubly occupied sites and charge fluctuations. These terms
help to establish tightly bound states upon doping that can be
studied with Lanczos methods on the small clusters currently
accessible with state-of-the-art computers. Comparisons with
RPA results for the five-orbital model and with experimental
data will be performed.

The organization of the paper is as follows: the model and
the method are reviewed in Sec. II, the main results for hole
doping are presented in Sec. III, while Sec. IV is devoted to
the conclusions.

II. MODEL AND METHOD

The model studied here is based on the well-known and
widely used two-orbital Hubbard model12,13,15 that employs
the dxz (x) and dyz (y) Fe orbitals. These orbitals provide
the largest contribution to the pnictides’ band structure at
the FS.16 The reduction in the actual number of active
orbitals in the pnictides is necessary in order to perform
the present Lanczos studies. Calculations with more orbitals
for the same cluster studied here are simply not possible at
present.

The parameters of the electronic hopping terms of the model
were previously chosen to provide a close agreement with the
band-structure calculations obtained with density-functional
theory.15 In addition to the hopping terms, the model also
includes the on-site Coulomb interaction consisting of intra-
and interorbital Coulomb repulsions with couplings U and
U ′, the Hund’s rule coupling JH, and the pair-hopping term
with strength J ′. While U can in principle depend on the
particular orbital due to different screening effects for each
orbital, this is not the case for the dxz and dyz orbitals that
form a degenerate eg doublet, implying that the relations U ′ =
U − 2JH and J ′ = JH are fulfilled for symmetry reasons.17

This Hamiltonian, with the kinetic-energy hopping and onsite-
interaction terms mentioned above, has been studied in
detail previously.12,13,15,18 Moreover, in a recent investigation
of the electron-doped case,11 the model was supplemented
by Heisenberg interactions to amplify the strength of the
magnetic state and, consequently, the pairing strength as
well.

Naively, it may seem that selecting a stronger on-site Hub-
bard interaction would stabilize a stronger antiferromagnetic
state. However, this procedure also induces an insulator, and
actually the strength of the effective coupling between the
Fe spins decreases as 1/U with increasing U . To avoid this
problem, in early studies of the one-band t-U -J model19

and in a recent study of the electron-doped two-orbital
model,11 Heisenberg terms have been added and shown to

enhance pairing tendencies. Since our aim is to investigate
the symmetries of the Cooper pairs, the additional magnetic
interactions must have the same symmetries as the original
Hamiltonian. To make sure that the symmetries are properly
handled, the additional Heisenberg interaction is given by the
operatorial form that corresponds to the superexchange terms
derived from the strong-coupling (large-U ) limit. In the case
of the one-band Hubbard model, this is a Heisenberg term
with spin S = 1/2. In the case of a multiorbital model away
from half filling, the corresponding superexchange contains an
orbital degree of freedom in addition to the spin, and it is of a
Kugel-Khomskii type.20,21

In the present case of a half-filled two-orbital model, the
low-energy Hilbert space for the strong-coupling limit, with
both U and JH large, is given by doubly occupied sites
with singly occupied orbitals. Due to the Hund’s coupling,
the two electrons per site form a triplet state, with an
energy E0 = U ′ − JH = U − 3JH, compared to E1 = U ′ +
JH = U − J ′ = E0 + 2JH and E2 = U + JH = E0 + 4JH for
inter- and intraorbital singlet states. The low-energy Hilbert
space is, thus, given by a spin S = 1 at each site. The
interaction between these spins can be obtained by second-
order perturbation theory in an analogous manner as the well-
known derivation of the Heisenberg model from the one-orbital
Hubbard model. The calculation for the two orbitals is most
easily carried out when the hopping term preserves orbital
flavor, because the first hopping process, which creates a
virtual excitation with energy U + JH, then has to involve the
same orbital as the second, which goes back to the low-energy
Hilbert subspace. By this procedure it can be shown that the
result is the isotropic Heisenberg interaction for S = 1 with a
coupling

Jeff = 2

3

t2
a + t2

b

U + JH
, (1)

where ta and tb are the hopping parameters corresponding to
the two orbitals. With the notation ta/b = t1/2,15 the nearest-
neighbor (NN) coupling JNN can be derived. For a next-
nearest-neighbor (NNN) coupling, which is natural since in
the original Hubbard model the hoppings involve both NN and
NNN Fe atoms, it is convenient to transform to a rotated orbital
basis (|xz〉 ± |yz〉)/√2, where the hoppings are diagonal in
orbital space and given by t3 ± t4, leading to

JNNN = 4

3

t2
3 + t2

4

U + JH
= 2

t2
3 + t2

4

t2
1 + t2

2

JNN. (2)

Similarly as in the previous investigation of Ref. 11 and to
avoid the proliferation of parameters, the ratio JNNN/JNN is
kept fixed to 0.93, which is the value that results from t1 = −1,
t2 = 1.3, t3 = t4 = −0.85.15 For the electron-doped case, the
results were found to be not sensitive to changes in this ratio
as long as the model remains in the regime with (π,0)/(0,π )
magnetic order.11

The extended two-orbital Hubbard Hamiltonian is exactly
investigated using the Lanczos algorithm2,22 on a tilted√

8 × √
8 cluster, as done in previous studies.2,12,13 In spite

of the small size of the cluster, this still requires substantial
computational resources. More specifically, even exploiting
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the Hamiltonian symmetries the calculation of the undoped-
limit ground state of the eight-site cluster still requires a basis
with ∼2–20M states (slightly more demanding than a 16-site
cluster one-band Hubbard model), depending on the subspace
explored. Runs applying the Lanczos technique had to be
performed for all the allowed momenta k of the cluster, for
all the quantum numbers under rotations and reflections (i.e.,
all the irreducible representations A1g , A2g , B1g , B2g , and Eg of
the D4h symmetry group13), and also for all the z-axis total spin
projections. In addition, the computation of binding energies
for the case of hole doping requires calculations for a number
of electrons N equal to 14, 15, and 16, varying U , JH, and JNN

using a fine grid. For these reasons, the overall effort amounted
to ∼8000 diagonalizations of the cluster, supplemented also by
calculations of dynamical properties, using a Penguin 128GB
Altus 3600 computer.

III. RESULTS

It is important to remind the readers that the most commonly
used models for the pnictides are usually defined in the so-
called unfolded Brillouin zone.8,13,15,23,24 Due to the symmetry
of the Fe-As planes,15,23 it is possible to describe the pnictides
using Fe-only effective models where the As atoms merely
provide a bridge for the electronic hopping between the
irons. Under this approximation only one Fe atom is left
per unit cell to describe these materials.25 As a result of
these considerations, the number of orbitals to be considered
is reduced by half, which is a computational advantage,
and the size of the Brillouin zone (BZ) is doubled. For
this reason, the momentum in the unfolded zone is dubbed
“pseudocrystal” momentum.23 In order to relate the model
results to experiments addressing the BZ corresponding to
two Fe atoms, it is necessary to “fold” the extended BZ in
such a way that the pseudocrystal momentum k = (π,π ) is
folded onto momentum (0,0). The physical difference between
states with k = (0,0) and (π,π ) is that the first indicates a
bonding and the second an antibonding combination of the d

orbitals in the two Fe atoms in the two-atom unit cell. In the
presentation of our results below, k will stand for pseudocrystal
momentum.

A. Phase diagram

The relative symmetry between the undoped (N = 16)
ground state (GS) and the N = 14 GS has been studied with
the Lanczos technique varying U/|t1| and JH/U . The undoped
GS was found to have momentum k = (0,0), and it transforms
according to the A1g representation of the D4h group, for
all the values of JH and U studied here, in agreement with
previous results.13 However, a surprising result found in the
present study of the hole-doped extended two-orbital model
is the presence of many competing low-energy states not only
with different symmetries as in the electron-doped case11 but
also with different pseudocrystal momenta k. In other words,
low-lying states with both k = (0,0) and (π,π ) were found
in our Lanczos investigation. This is compatible with previous
mean-field approximation results that also reported low-energy
spin-singlet pair states with momentum (π,π ).26
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FIG. 1. (Color online) Difference between the energy of the
lowest excited state with the symmetry and momentum indicated
and the ground state. Full (open) symbols denote k = (0,0) [k =
(π,π )]. The results are obtained using the Lanczos algorithm for
the two-orbital model in an eight-site cluster with 14 electrons (two
holes doping), varying the Hubbard repulsion U , and at a fixed
JH/U = 0.20. The inset shows a larger energy range in which the
lowest lying state with each symmetry is displayed. The results shown
in this figure are without the extra JNN and JNNN terms.

The competition among low-lying states with different
symmetries and with different values of k is presented in
Fig. 1 for the case JH/U = 0.20, without the extra “J ” terms.
Numerically, it was found that the ground state for 14 electrons
has crystal momentum (π,π ). For small values of U this state
is a triplet with A2g symmetry (open circles in the figure).
With increasing U , a transition (via a level crossing) occurs at
U ∼ 6|t1| to a spin-singlet ground state with B2g symmetry
(open squares in the figure). However, it can be observed
that there are states with k = (0,0) that have very similar
energies. For example, for this pseudocrystal momentum, and
in the weak-coupling regime, a spin-singlet state with B1g

symmetry (represented with filled triangles in the figure) is
the closest in energy to the ground state, while for U � 3|t1|
a spin-singlet state with A1g symmetry prevails (represented
with filled diamonds in the figure).

Similar results were found for all the values of U and JH

studied; i.e., the N = 14 ground state has total momentum
k = (π,π ) but there are k = (0,0) states close in energy with
a different symmetry. For this reason, the phase diagrams
obtained by varying JH/U and U/|t1| for both values of the
pseudocrystal momentum will be presented.

The relative symmetry between the ground state with
two electrons less than half filling with total pseudocrystal
momentum k = (0,0) and the undoped ground state is shown
in Fig. 2(a), varying JH/U and U/|t1|. A region with symmetry
B1g , indicated by the triangles, is found for small U/|t1|
(roughly U/|t1| � 3) and moderate to large values of JH/U .
For larger values of U/|t1|, the symmetry changes to A1g .
A similar transition from B1g to A1g (extended s wave) has
been found using the RPA technique for an electron-doped
five-orbital model at JH = 0.8 The binding energy EB, defined
as EB = E(14) + E(16) − 2E(15), where E(N ) is the GS
energy for N electrons, was also calculated. It was found that
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FIG. 2. (Color online) Relative symmetry between the N = 16
(undoped) and N = 14 [with k = (0,0)] ground states, varying U and
JH/U . Triangles denote B1g-symmetric singlets and diamonds denote
A1g-symmetric singlets. (a) Results for couplings JNN = JNNN = 0.
(b) Results for the lowest value of (JNN,JNNN) where binding appears
with a fixed ratio JNN/JNNN = 0.93.11

without the addition of Heisenberg terms there are no regions
with binding.

For the other case of a pseudocrystal momentum k = (π,π ),
the analogous numerical results are shown in Fig. 3(a). It was
found that an A2g spin-triplet ground state, indicated by circles
in the figure, dominates for large values of JH/U and small
U/|t1|. For the electron-doped model, an A2g spin triplet with
momentum (0,0) was similarly observed at large JH and small
U .12,13 For smaller JH/U and larger U/|t1|, a spin-singlet
ground state with B2g symmetry is the ground state. For this
pseudocrystal momentum, the binding energy was calculated
as well: binding was obtained for JH/U = 0.35 where a spin-
triplet ground state with symmetry A2g prevails (see open
triangles in the figure).
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FIG. 3. (Color online) Relative symmetry between the N = 16
(undoped) and N = 14 [with k = (π,π )] ground states varying U

and JH/U . Circles denote spin-triplet states and squares denote
B2g-symmetric singlets. (a) Results for couplings JNN = JNNN = 0.
Open triangles indicate binding. (b) Results for the lowest value of
(JNN,JNNN) where binding appears with a fixed ratio JNN/JNNN =
0.93.11

B. Binding stabilization

To stabilize hole binding in the two-orbital model, we will
proceed as in the previous investigation of the electron-doped
case11 by adding extra Heisenberg terms, namely a NN
coupling JNN and a NNN coupling JNNN as discussed in Sec. II.
As in the electron-doped case, and as already explained, JNN

will be varied while JNN/JNNN will be kept fixed at the value
0.93.11

The results for pseudocrystal momentum k = (0,0) are
presented in Fig. 2(b), showing the symmetry of the hole-
doped ground state for the lowest value of JNN where binding
of holes is achieved. The phase diagram remains largely
unchanged by the addition of the Heisenberg terms except for
the B1g region that has expanded slightly towards larger values
of U . On the other hand, for states with momentum k = (π,π )
the spin-triplet region virtually disappears [Fig. 3(b)], except
for those triplet states that already had EB < 0 at JNN = 0,
leaving behind a much larger B2g region in parameter space.

In Fig. 4(a), the binding energy EBvs. JNN/U for states with
momentum k = (0,0) is shown for several values of U and
at a fixed (realistic) JH/U = 0.2. Increasing JNN eventually
induces binding for all U ’s. The value of JNN/U where binding
occurs decreases as U increases. Figure 5(a) shows the same
information but for the states with momentum k = (π,π ),
where a similar qualitative behavior is observed.

A study of the binding energy EB and the relative symmetry
between the N = 16 and 14 GS’s allows us to construct
phase diagrams in the (U,JNN/U ) plane. In Fig. 4(b), typical
results for the case JH/U = 0.2 are shown27 for the states
with total momentum k = (0,0). The bound state has A1g

symmetry in most of the binding region, but a state with B1g

symmetry prevails at smaller U values (∼3|t1|). In Fig. 5(b)
the same information is displayed but for states with total
momentum k = (π,π ). In this case, the entire binding region,

FIG. 4. (Color online) Results for states with total momentum
k = (0,0). (a) EB/|t1| vs JNN/U for different values of U/|t1|,
at JH/U = 0.2 and JNN/JNNN = 0.93. (b) Phase diagram showing
“binding” and “no binding” regions and the symmetry of the two-hole
bound state varying U/|t1| and JNN/U , at a fixed JH/U = 0.2. The
shaded area indicates the so-called physical region obtained from
standard mean-field calculations that were compared with neutrons,
transport, and photoemission experimental results.28 The dotted line
is for Fig. 7 (a).
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FIG. 5. (Color online) Results for states with total momentum
k = (π,π ). (a) EB/|t1| vs JNN/U for different values of U/|t1|,
at JH/U = 0.2 and JNN/JNNN = 0.93. (b) Phase diagram showing
“binding” and “no binding” regions and the symmetry of the two-hole
bound state varying U/|t1| and JNN/U , at a fixed JH/U = 0.2. The
shaded region indicates the “physical region” according to standard
mean-field calculations.28 The dotted line is for Fig. 7(b).

except for JH/U > 0.3, has B2g symmetry. All of the above
symmetries appear inside the proper magnetic/metallic region
of the undoped limit (indicated with shading in the figures)
that were obtained in previous mean-field calculations18,28

extended to incorporate JNN.11

C. Magnetism

Since the two-orbital Hubbard model for the pnictides is
not particle-hole symmetric, it is interesting to study how the
nature of the doping, namely electrons versus holes, affects
the intensity of the magnetic order. In the actual materials,
experimental results have shown that the in-plane resistivity
of electron and hole-doped FeAs-based pnictides displays a
larger anisotropy in the electron-doped case.29 Thus, it has
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FIG. 6. (Color online) Numerically calculated magnetic structure
factor S(k), as a function of the momentum, using an eight-site cluster.
Results for the undoped N = 16, electron-doped N = 18, and hole-
doped N = 14 cases are indicated, for couplings U/|t1| = 3, JH/U =
0.2, and JNN/U = 0.2.

been conjectured that the xz/yz magnetism is stronger in the
electron-doped case, while in the hole-doped case it is weaker
with a growing contribution of the xy orbital, disregarded in
the two-orbital model, that forms the hole pocket around M .29

A similar conclusion was reached via the FLEX approximation
for the case of electron and hole doping of a five-orbital
Hubbard model.30

The results for the two-orbital model studied here are shown
in Fig. 6, where the magnetic structure factor S(k) is shown
in the undoped (crosses), electron-doped (circles), and hole-
doped (diamonds) regimes, at fixed couplings U = 3, JH/U =
0.2, and JNN/U = 0.2, namely, in the mean-field calculated
“physical region” indicated in Fig. 5(b). While doping reduces
the strength of the peak at k = (π,0), it is interesting to notice
that the intensity is slightly more reduced in the hole-doped
case. These results lend qualitative support to the notion that
the magnetism in the xz and yz orbitals is stronger in the
electron-doped case, and it becomes reduced when holes are
introduced.

D. Overlap integrals

In this subsection, the functional forms of the hole pairing
operators that produce the hole bound states will be analyzed.
With this goal, the overlap defined by

〈�(N=14)(k′)|�k′−k,i |�(N=16)[k = (0,0)]〉 (3)

was calculated using the Lanczos algorithm along the paths
indicated by the dotted lines in the phase diagrams shown in
Figs. 4(b) and 5(b). Notice that for |�14(k′)〉 the pseudocrystal
momentum k′ will take the values (0,0) and (π,π ) and, thus,
a pairing operator with the appropriate k′ − k has to be used
to ensure a nonzero overlap. The ground state |�(N )〉 in the
subspace of N electrons was used, and the operator in Eq. (3)
was defined as

�k,i =
∑
αβ

f (k)(σi)αβdk,α,↑dk,β,↓, (4)

where dk,α,σ destroys an electron with spin z-axis projection
σ , at orbital α = x,y, and with momentum k. The structure
factor f (k) arises from the spatial location of the fermions
forming the pair,13 and σi are the Pauli matrices (i = 1,2,3)
or the 2 × 2 identity matrix σ0 (i = 0). Note that σ1 and σ2

imply an interorbital pairing. Overlaps for all the symmetries
in Ref. 13, and with NN and NNN locations for the electronic
pairs, were numerically evaluated.

In Fig. 7(a), the overlaps for pairing operators with
pseudocrystal momentum k = (0,0) are presented for values
of U and JH along the dotted path in Fig. 4(b). In the A1g

region in Fig. 7(a), we found that the same four pairing
operators that have a finite overlap in the electron-doped
case11 also have one here. However, the relative strength of
the overlaps differ. For consistency, we will use the same
labeling for the operators as in Ref. 11. The A1g operator
with the largest overlap is the operator (ii), i.e., the s±
operator characterized by f (k)σi = (cos kx cos ky)σ0, as in the
electron-doped case;11 it is indicated by hollow diamonds in
Fig. 7(a). However, in the hole-doped system the overlap for
the pairing operator (iv) characterized by (cos kx − cos ky)σ3

(hollow circles) follows in strength; this operator had the

024532-5



NICHOLSON, GE, RIERA, DAGHOFER, MOREO, AND DAGOTTO PHYSICAL REVIEW B 85, 024532 (2012)

(5.00,0.06) (4.10,0.102) (3.05,0.151) (2.00,0.20)

(U,J
NN

/U)

0

0.1

0.2

0.3

<
ψ

14
(0

,0
)|Δ

|ψ
16

(0
,0

)>

A
1g

 (i)

A
1g

 (ii)

A
1g

 (iii)

A
1g

 (iv)

B
1g

 (viii)

B
1g

 (ix)

B
1g

 (x)

ii

iv

i

iii

ix
viii

x

(a)

0.1 0.15 0.2
J

NN
/U

0

0.05

0.1

0.15

0.2

0.25

<
ψ

14
(π

,π
)|Δ

|ψ
16

(0
,0

)>

B
2g

 (vii’)

B
2g

 (vi’)

vi’

vii’

(b)

FIG. 7. (Color online) Overlap 〈�(N = 14)|�k,i |�(N = 16)〉 vs
JNN/U for the indicated pairing operators, at U = 3 |t1| and JH/U =
0.2, for (a) states with total momentum k = (0,0) along the dotted
path in Fig. 4(b) and (b) states with total momentum k = (π,π ) along
the dotted path in Fig. 5(b).

weakest overlap in the electron-doped case.11 The pairing
operator (i) with (cos kx + cos ky)σ0 (hollow squares) has an
overlap almost as strong as in the electron-doped case. Finally,
the overlap corresponding to the operator (iii) (sin kx sin ky)σ1

(hollow triangles) is even more suppressed upon hole doping
than upon electron doping.

In the region where the pairs have B1g symmetry there are
three pairing operators with large overlaps: (viii) (cos kx +
cos ky)σ3 (solid circles), (ix) (cos kx cos ky)σ3 (solid dia-
monds), and (x) (cos kx − cos ky)σ0 (solid squares). At small
values of JNN/U , (ix) has the largest overlap amplitude
followed by (x) and (viii). However, as JNN/U increases (viii)
overtakes (ix).

For the case of pairing operators with pseudocrystal
momentum k = (π,π ), there is one contribution that clearly
dominates [see Fig. 7(b)]: (vi’) (cos kx cos ky)σ1, which cor-
responds to a NNN pair with B2g symmetry. The prime in
the label is used to remind the reader that the operator has a
different pseudocrystal momentum from the B2g state with the
same label discussed in the electron-doped case.11 The only
other nonzero pairing overlap occurs for (vii’) (sin kx sin ky)σ0

and has a much smaller amplitude than (vi’). Interestingly, the
nearest-neighbor B2g operator (v) characterized by (cos kx +

cos ky)σ1 that had the strongest overlap in the electron-doped
case11 has zero overlap in the case studied in this manuscript.
All the gaps for the pairing operators with B2g symmetry have
nodes along the x and y axes.

E. Dynamical pair susceptibilities

To complete our analysis, the dynamical pair susceptibili-
ties defined as

P (ω) =
∫ ∞

−∞
dteiωt 〈�†

k,i(t)�k,i(0)〉 (5)

were also studied in the state with N = 16 for the pairing
operators �k,i introduced in Sec. III D. Notice that the
calculated spectral decomposition involves excited states with
N = 14. The procedure described in Ref. 31 in the context of
the cuprates will be followed. As discussed above, for N = 14
there are several low-energy states near the ground state that
have different symmetries. The dynamical pair susceptibilities
show that most of these low-lying states have a large overlap
with �k,i |�N=16(0)〉 for �k,i with the appropriate symmetry. In
Fig. 8, results for U = 3|t1|, JH/U = 0.2, and JNN/U = 0.10
are presented. Large overlaps with low-lying N = 14 states
are observed for operators (ii) and (iv) with A1g symmetry
and (viii) and (x) with B1g symmetry, as well as for oper-
ator (vi’) with B2g symmetry and pseudocrystal momentum
k = (π,π ).

It is interesting to compare the results obtained for the
dynamical pair susceptibility upon hole doping with those
obtained for electron doping.11 In both cases, large susceptibil-
ities for the low-lying states with A1g , B1g , and B2g symmetries
are found. This is remarkably different from the case of models
for the cuprates where an analogous low-lying overlap analysis
showed that dx2-y2 -wave symmetry clearly dominates over all
others.31

Returning to pnictides, a similarity between the electron-
and hole-doped cases is that the B1g pairing operator that has
the highest susceptibility, state (viii), is different from the B1g
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FIG. 8. (Color online) Dynamic pairing susceptibility for the
pairing operators with total momentum k = (π,π ) (operators with
B2g symmetry) and with total momentum k = (0,0) (operators with
B1g and A1g symmetry) (see text), at U = 3.0 |t1|, JH/U = 0.2, and
JNN/U = 0.10. The vertical line indicates EGS(14) − EGS(16).
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pairing state for the cuprates. It corresponds to Cooper pairs
mainly located on NNN sites, as opposed to the dominant NN
contribution in the cuprates, and in the orbital basis used here
the B1g symmetry is realized by the orbital degree of freedom.
In addition, the susceptibilities indicate that while NN pairs
are favored in the electron-doped case NNN have larger
susceptibilities upon hole doping for A1g and B2g symmetries.

IV. CONCLUSIONS

The properties of a recently introduced two-orbital ex-
tended Hubbard model for the pnictides have been studied
upon hole doping with the help of the Lanczos method.
The results were contrasted with the previously studied
electron-doped case.11,13 Due to the lack of particle-hole
symmetry in the Hamiltonian, the results, as expected, are
quantitatively different in both cases. However, an additional
surprising characteristic of the hole-doped ground state is
that it has pseudocrystal momentum (π,π ). In the reduced
Brillouin-zone representation corresponding to the physical
two Fe-atom per unit cell description of the pnictides, having
a nonzero pseudocrystal momentum means that the ground
state is characterized by antibonding rather than bonding
combinations of the orbitals of the two Fe atoms in the unit
cell. In terms of the pairing operators that are favored, it
means that the pairs would arise from hole carriers located
at the hole pockets centered at 	 and at M in the unfolded
Brillouin zone. Interestingly, the five-orbital model for the
pnictides14 shows that upon hole doping a hole pocket, absent
in the electron-doped case, develops around M , and this pocket
plays an important role in the properties of the hole-doped
materials.14,30 Our results may indicate that a simple toy model,
such as the two-orbital model, could be used to study the
role that a hole pocket at M plays when multiorbital Hubbard
models are hole doped.

In spite of this difference in the pseudocrystal momentum
quantum number, there are several commonalities between
the hole- and electron-doped two-orbital Hubbard models. The
most important feature is that there are several low-lying states
with different symmetries close to the undoped ground state.
For this reason, the symmetry of the doped states is strongly
dependent on the actual values of the interaction parameters.
Spin-singlet states that transform according to the irreducible
representations A1g , B1g , and B2g were obtained both for hole
and for electron doping.

It is remarkable that some of these exact diagonalization
results are compatible with the conclusions obtained via ap-
proximate studies of more realistic five-orbital Hamiltonians.
For example, RPA calculations in the weak-coupling limit32

indicate that the s- or d-wave symmetry of the pairing operator
depends on the crystal structure of the material and the degree
and type of doping. Similar results were obtained via a
FLEX approximation.33 An analogous transition from s- to
d-wave symmetry was found upon doping using a functional
renormalization group approach34 and also in studies in the
strong coupling limit.10

The richness of the phase diagrams unveiled here, and in
the cited previous investigations, suggests that the symmetry
of the pairing state in the pnictides is likely to depend on details
of the material under study, as well as on the type of doped
carriers (electrons or holes) and on the density of dopants.
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