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Spectral density in a nematic state of iron pnictides
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Using cluster-perturbation theory, we calculate the spectral density A(k,w) for a nematic phase of models
describing pnictide superconductors, where very short-range magnetic correlations choose the ordering vector
(r,0) over the equivalent (0,7) and thus, break the fourfold rotation symmetry of the underlying lattice without
inducing long-range magnetic order. In excellent agreement with angle-resolved photoemission spectroscopy
(ARPES), we find that the yz bands at X move to higher energies. When on-site Coulomb repulsion brings
the system close to a spin-density wave (SDW) and renormalizes the bandwidth by a factor of &2, even small
anisotropic couplings of 10-15 meV strongly distort the bands, splitting the formerly degenerate states at X and
Y by ~70 meV and shifting the yz states at X above the chemical potential. This similarity to the SDW bands is
in excellent agreement with ARPES. An important difference to the SDW bands is that the yz bands still cross
the Fermi level, again in agreement with experiments. We find that orbital weights near the Fermi surface provide
a better characterization than overall orbital densities and orbital polarization.
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I. INTRODUCTION

In recent years, iron-based superconductors have been
intensely studied,’> because of their high superconducting
transition temperatures. As in the cuprates, antiferromagnetic
(AFM) order is present in the phase diagram and phonons
are not believed to be strong enough to explain the high
transition temperatures.3 However, in the pnictides the AFM
phase is a metallic spin-density wave (SDW) rather than a
system of localized Heisenberg spins as is the case in the
cuprates. At temperatures slightly above the transition to the
SDW with ordering vector (77,0) or (0,7), many weakly doped
compounds show an orthorhombic phase without long-range
magnetic order, but with broken rotational symmetry. This
phase has slightly different lattice constants along the in-plane
iron-iron bonds,* but the anisotropy that develops in electronic
observables such as resistivity>° or angle-resolved photoemis-
sion spectroscopy (ARPES)”~'° of detwinned samples appears
considerably more pronounced.

A number of competing scenarios have been proposed for
this phase and can be broadly categorized as “magnetism,”
“orbital,” and “lattice” driven. In the first case, the symmetry
between equivalent magnetic ordering vectors (77,0) and (0,7)
is broken and the system chooses one of them without immedi-
ately establishing long-range magnetic order.' !> In the second
picture, it is the degeneracy between two d orbitals of the iron
ion, the xz and yz states providing the greatest contribution
to the states at the Fermi surface (FS), that is spontaneously
broken;'? the resulting orbital occupation then determines the
effective magnetic exchange constants that generate the SDW
order. Both pictures were first discussed in insulating spin
and spin-orbital models and have since been generalized to
take into account electron itineracy. Studies in several models
have shown that nematic phases can indeed develop between
structural and magnetic transition temperatures.'* !>

While a definite answer about the driving mechanism may
be hard to nail down, as spin, orbital,'»'* and lattice!>~!
degrees of freedom are naturally coupled and interact with
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each other, one may nevertheless try to identify the dominant
ingredient(s). To this end, it is instructive to establish how each
type of symmetry breaking manifests itself in observables.
If the symmetry breaking is assumed to mostly concern the
xz and yz orbitals, one can introduce it explicitly by adding
a phenomenological energy splitting between the orbitals
and evaluating its impact on observables such as the optical
conductivity or the spectral density. These signatures were
found to qualitatively agree with experiments,'® where states
of yz character are found to be higher in energy than those of
xz character in several different pnictide compounds from the
two structurally slightly different “111”” and “122” families. On
the other hand, ARPES data taken above the Néel temperature
have alternatively been interpreted in terms of “band folding”
due to magnetic order’ or emphasising the coupling between
magnetic order and the orbital states near the Fermi level.'
Short-range magnetic order' and the spin-nematic scenario®’
likewise reproduce the anisotropic conductivity, and the latter
has been argued to lead to an effective orbital splitting.'*
However, a direct calculation of the spectral density in a
nematic phase is so far lacking.

We use here a method that combines real and momentum
space, cluster-perturbation theory (CPT),?!?? to calculate the
one-particle spectral density A(K,w) for a spin-nematic phase
where rotational symmetry is broken via (very) short-range
spin correlations that are AFM in the x direction and ferromag-
netic (FM) in the y direction [corresponding to ordering vector
(,0)], but without long-range magnetic correlations beyond
second neighbors. The obtained spectral density reproduces
the momentum dependence of the band shifting observed
in ARPES.?!% If on-site interactions bring the system close
to the SDW transition, a small phenomenological magnetic
anisotropy leads to large anisotropies in A(k,w). Thus, we can
theoretically describe the astonishing ARPES result that the
overall bandshifts characterizing A(k,w) in the SDW phase are
nearly fully developed already above the Néel temperature.®

In order to be able to solve the problem exactly on a small
cluster, we use variants of models with three?> and four*
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orbitals; models and method are introduced and discussed in
Sec. II. Section IIT A discusses the anisotropic band shifts
induced by (strong) anisotropic magnetic couplings in the
noninteracting models; in Sec. III B, we show that in the
presence of on-site interactions and near the SDW transition,
smaller magnetic anisotropies have a large impact. In Sec. IV,
our results are summarized and discussed.

II. METHOD AND MODEL

The aim of the paper is to calculate the spectral density
A(k,w) in a phase where (short-range) magnetic correlations
break the fourfold symmetry of the lattice, but without long-
range magnetic order. The latter requirement prevents us from
carrying out our calculations directly in momentum space, as
it has been done for the paramagnetic and AFM phases. As
an alternative approach, we choose here cluster perturbation
theory.?!?? In this method, the ground state and one-particle
Green’s function are evaluated (almost) exactly (with Lanczos
exact diagonalization) for a fully interacting quantum model
on a small cluster, and hoppings between clusters are treated
in perturbation theory [for an illustration see Figs. 1(a) and
1(b)]. Apart from the limit of small intercluster hoppings, this
approximation also becomes exact in the opposite limit of
vanishing interactions, as can be seen by considering that it
amounts to replacing the self-energy of the full system by
that of the small cluster.”® Long-range order can be treated
with the related variational cluster approach (VCA),?%?" as
has been done for a two-orbital model for pnictides.?®?

The biggest drawback of the VCA is that correlations
are only included exactly within the small cluster, while
longer-range effects are treated at a mean-field level. For
nematic phases with at most short-range order, this limitation
turns into a huge advantage: We can break the symmetry
between the x and y directions locally on the small cluster
(see below), but without imposing long-range order by a
symmetry-breaking field. If the small cluster is, e.g., an AFM
coupled dimer, its ground state is thus still given by a singlet,
i.e., a superposition of “up down” and “down up,” which
removes long-range correlations.

When using a dimer as the directly solved cluster, we find
instabilities, i.e., poles of the one-particle Green’s function
that are on the wrong side of the chemical potential. While
this does not necessarily invalidate the results (which are in
fact similar to the more stable results described below), it may
indicate that the self-energy of a dimer differs too strongly
from that of a large two-dimensional system to provide a
reliable approximation. In order to be able to use three- (four-)
site clusters instead, which lead to stable results, we restrict
the Hamiltonian to the four (three) orbitals that contribute
most of the weight at the FS. The results presented here were
obtained with the cluster decompositions shown in Figs. 1(a)
and 1(b), but equivalent results were found for the three-
orbital model when using a “brick-wall” arrangement of 2 x 2
clusters instead of the “columns” in Fig. 1(a).

The momentum-dependent tight-binding Hamiltonian in
orbital space can be written as

Z T/‘V(k) K, .0 kva (1)

K01,

Hrp(k) =
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FIG. 1. (Color online) Schematic illustration of the cluster de-
composition into (a) four-site and (b) three-site clusters used for the
three- and four-orbital models. Ground-state energies and Green’s
functions of the small cluster—as connected by thick solid lines—are
obtained by exact diagonalization. Clusters are then connected in
CPT along the thinner dashed bonds. Within the cluster, AFM
(FM) Heisenberg exchange acts between electrons along the x (y)
bond. (c) Spectral density A(k,w) of the noninteracting three-orbital
model, Egs. (1)—(6). Solid lines indicate the bands in terms of the
pseudocrystal momentum k and shading indicates the spectral weight
in terms of “real” momentum K; the difference is that weight with xy
character shifts by (7r,77). [Note that along (0,0)-(rr, ), the bands with
dominant xz/yz character contain these two orbitals with identical
weight, even though the yz character—here drawn on top—dominates
the figures.] (d) A(k,w) of the noninteracting four-orbital model.
Dashed lines indicate the results for the model that is obtained by
removing* the 372 — r? orbital from the five-orbital model of Ref. 25.
Solid lines are for the model used here, where the x> — y? orbital is
then somewhat removed from the Fermi level by changing 3} from
—0.02 to ¥ = 0.03 and €; from —0.22 to —0.12 (notation as in
Ref. 25). As in (c), shading indicates the spectral weight for the real
momentum instead of the pseudocrystal momentum. In the online
version, red refers to xz, blue to yx, and green to all other orbitals. In
all spectra, peaks are broadened by a Lorentzian §/[(w — wy)* + 6°]
with § = 0.05 except for (d), where § = 0.025. All energies are ineV.

where d-: (df ) annihilates (creates) an electron with
k,v,0 k,v,0

pseudocrystal momentum k and spin ¢ in orbital v. The
three-orbital model used here is based on the model of Ref. 23,
but a few longer-range hoppings were added to provide a better
fit of the bands near the FS, because the original three-orbital
model has magnetic instabilities too far from (i,0)/(0,7).%
The T**(k) give the hoppings between orbitals 1 and v and
are

T1/22 _ 211 cos ky + 21y, cos ky + 413 cos ky cos k,
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=+ 2t11(cos 2k, — cos 2ky) + 4t15 cos 2k, cos 2k,
()

T3 = Ay + 2ts(cos ky + cos ky) + 4tg cos k, cos k,
+ 2t9(cos 2ky + cos 2ky)

+4t10(cos 2k, cos ky, + cos k, cos 2k,), 3)
T'? = 7' = 44y sin k, sin k,, “4)
T = T3 = 2ity sin k, + ditg sin k, cos ky,  (5)

T% = T% = 2ity sin k, + ditg sin k, cos ky,  (6)

where a bar denotes the complex conjugate. Hopping pa-
rameters are t; = —0.08, 1, = 0.1825, 13 =0.08375, t, =
—0.03,¢5 =0.15, tc = 0.15, t = —0.12, 1t = —t;/2 = 0.06,
tio = —0.024, t;; = —0.01, #, = 0.0275, Axy =0.75, and
n = 0.4745; Fig. 1(c) shows the uncorrelated tight-binding
bands. The four-orbital model was obtained by removing the
3z% — r? orbital®* from the five-orbital model of Ref. 25 and
slightly changing on-site energy and third-neighbor hopping
of the x> — y? orbital to alleviate the fact that removing the
372 — r2 orbital moves it too close to the Fermi level [see
Fig. 1(d)]. In principle, hoppings can be extended to three
dimensions and parameters could be fitted to model specific
compounds, at least in the more detailed four-orbital model.
The features we aim to study here—an anisotropy between
the X and Y points—have been experimentally observed
in different compounds, and we are going to see that both
the three- and the four-orbital models lead to similar results
despite their somewhat different dispersions, suggesting that
fine-tuning of the kinetic energy is not crucial.

We use a unit cell with one iron atom to distinguish between
momenta (77,0) and (0,7), which would both map to (7,77) fora
two-iron unit cell. Due to an internal symmetry of the two-iron
unit cell,>"* it is always possible to use a one-iron unit cell for
tight-binding models restricted to an Fe-As plane. However,
the xz and yz orbitals with momentum k couple to the other
orbitals at momentum k + (;r,77). Thus, one writes the tight-
binding Hamiltonians in terms of a pseudocrystal momentum
k, which is k = k for xz/yz and k = k + (,7) for xy/x* —
y2/3z%> — r2. In real space, such a notation corresponds to
a local gauge transformation, where replacing, e.g., the xy;
orbital at site i = (iy,iy) by (—1)**)xy; (and analogously
for x2 — y? and 3z% — r?) leads to a translationally invariant
Hamiltonian with a one-iron unit cell. For comparison with
ARPES experiments, however, this gauge transformation has
to be undone, which implies that spectral weight at k with
orbital character xy, x> — y?, or 3z — r? is plotted at k =
k + (m,7).1833

In order to study a nematic phase, the fourfold lattice sym-
metry is explicitly broken by introducing a phenomenological
Heisenberg interaction, which couples electrons in all orbitals,

Hyeis = & Janis Z Sip, ' SjU7 @)

Q) lx/y
i3

where ©,v denote orbitals and (i,j) nearest-neighbor (NN)
bonds. For Jy,s > 0, the coupling is AFM (FM) along the
x (y) direction. The electron-spin operators are given by
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Siv =3 ZM dwsa dy,o» Where 0 = (0%,07,0%) is the vector
of Pauli matrices. These interactions act only within the small
cluster that is solved exactly. We are here not going to inves-
tigate the origin of such a breaking of rotational symmetry,
which has been shown to occur in several models,' 121415 put
we will study its impact on the system. We find that when the
system is close to the spin-density wave, very small values
of Janis trigger highly anisotropic band distortions, suggesting
that short-range correlations, as observed in a spin-fermion
model,' indeed favor such a symmetry breaking.

When on-site interactions*>> are taken into account, the
same values of intraorbital Coulomb repulsion U, interorbital
repulsion U’, Hund’s rule coupling J, and pair hopping J' = J
were used for all orbitals, along with the standard relation
U =U-2J,giving

mt— UanaTnlot¢+(U _J/Z) Z ni,oMNi,g

i,a<p
—ZJZSW- 5
ia<p
+ T D oy i (i g+ He), (®)
ia<p

where «,B denote the orbital and S;, (ni,) is the spin
(electronic density) in orbital « at site i. While the parameters
relating to the xy and x? — y? orbitals can in principle be
slightly different from each other and the xz/yz doublet,
symmetric interactions were chosen for simplicity.

III. RESULTS

A. Band anisotropy in the three- and four-orbital models

In order to study the effects of phenomenological short-
range magnetic correlations, the Hamiltonian given by Egs. (1)
and (7) was initially treated with the VCA on a four-site
cluster, with AFM interactions along x and FM interactions
along y but without on-site Coulomb and Hund interactions.
A fictitious chemical potential was optimized as a variational
parameter, but did not have a large impact on the results. No
tendencies toward long-range order were found, which agrees
with expectations: Since the AFM Heisenberg interaction
only acts within the cluster, it favors a total cluster spin of
Siot = 0. Inthe large system, consisting of many noninteracting
clusters, there is no magnetic order. Rather, large Jons 2=
0.3 eV has to be chosen to induce appreciable signatures of
the anisotropy, which is a very large energy scale compared
to the other parameters of the Hamiltonian. The reason is that
the noninteracting model with four electrons per site does not
contain any net unpaired spins that can directly be coupled
by a Heisenberg interaction; the interaction first needs to be
strong enough to induce a local spin.

The spectral density for J,u;s = 0.5 eV is shown in Fig. 2(a).
Apart from the fact that the Heisenberg interactions make
the spectrum more incoherent, the bands are most strongly
modified near X = (7,0), which corresponds to the ordering
vector that would be favored by the NN AFM interaction along
x. One clearly sees that the yz states around X are moved to
higher energies, while the xz states at ¥ = (0,77) are shifted
to slightly lower energies in agreement with experiments. The
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FIG. 2. (Color online) (a) Spectral density A(k,®) and (b) Fermi
surface of the three-orbital model (four-site cluster) with parameters
as given for Fig. 1(c) and an explicit symmetry-breaking Juis =
0.5 eV [see Eq. (7)], but without Coulomb repulsion and Hund’s
rule coupling. Shadings are for real momentum; lines indicate the
noninteracting model in pseudocrystal momentum k.

energy shifts are momentum dependent: While the differences
between X and Y are large, changes around I' = (0,0) are far
less pronounced. The corresponding orbital-resolved FS can
be seen in Fig. 2(b). Like the spectral density, it shows some
features that are similar to those resulting from band folding
in a (7r,0) SDW; for example, the x z electron pocket at ¥ has a
“mirror pocket” at M = (7,m) = Y + (7r,0). However, the FS
is still qualitatively different from the FS found in the long-
range-ordered SDW, where folding leads to additional features
and largely suppresses the yz weight,® which dominates the
hole pockets here. Such differences related to long-range order
are consistent with ARPES experiments in NaFeAs® (see also
the discussion in Sec. III B).

The same behavior as in the three-orbital model is seen
for the four-orbital case (see Fig. 3), where A(k,w) is shown
for increasing Jyns = 0.2, 0.3, and 0.4 eV. In the last case,
the splitting between the states at X and Y is ~150 meV.
Taking into account that the overall bandwidth has to be
renormalized by a factor of 2-3, this is consistent with the
order of magnitude of the 60 meV splitting reported for
Ba(Fe;_,Co,),As;.” This can be compared to an explicit
orbital splitting, similar to the mechanism proposed in Ref. 18.
The splitting can be written as A = (ny; — n,;)/2, where
Ny, (ny;) is the density in the xz (yz) orbital, and was set
to A = 0.15 eV, which approximately reproduces the energy
difference between the X and Y points indicated by the dashed
lines in Fig. 3(c). A momentum-independent splitting large
enough to reproduce the energy differences between the X and
Y points substantially distorts the features near the I" point as
well. While the unoccupied states above the chemical potential
at I' are not easily accessible in ARPES, available data on the
bands defining the hole pockets appear more consistent with
the slighter changes caused by momentum-dependent shifts of
the nematic scenario, especially for cases with a large splitting
between the features near X /Y, where the bands near I' would
be very strongly distorted by a rigid shift.”~10

Total orbital densities do not turn out to be a reliable way
to characterize the impact of the nematic order on states near
the Fermi energy. Densities in the xz and yz orbitals differ
only slightly in the four-orbital model with n,, — n,, ~ 0.02
for Juns = 0.4 eV. This value is not strongly affected by
4% hole or electron doping, in contrast to a proposed sign
change for hole doping'* and it is broadly consistent with
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FIG. 3. (Color online) Spectral density A(K,w) of the four-orbital
model (three-site cluster) [see Fig. 1(d)], and an increasing explicit
symmetry-breaking term, Eq. (7), of (a) Juis = 0.2 eV, (b) Janis =
0.3 eV, and (c) Jys = 0.4 eV. Coulomb repulsion and Hund’s rule
coupling are not included. Shadings are for real momentum; solid
lines indicate the noninteracting model in pseudocrystal momentum
k. In (c), dashed lines are for a noninteracting model with an energy
difference A = 0.15 eV between the xz and yz orbitals, which was
fitted to approximately reproduce the difference between the X and
Y points.

the small orbital polarizations found in mean-field analyses
for the SDW state.?3-3® In the three-orbital model, the orbital
polarization is even opposite with n,, — n,. ~ —0.1, because
the spectral weight with yz character is transferred below the
Fermi level [see the density of states shown in Fig. 4(a)],
and in contrast to the four-orbital model [see Fig. 4(b)], this
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FIG. 4. (Color online) Density of states for (a) the three-orbital
model with J,,;; = 0.5 eV and (b) the four-orbital model and J,,;s =
0.4 eV. U = Jyuna = 0 in both cases.

weight is not balanced by xz states further away from pu.
Nevertheless, the band reconstruction near the Fermi level
and the band anisotropy are very similar in the two models.
AFM correlations along x always bring the yz states around X
closer to the Fermi level, even when the total orbital densities
satisfy n,, > n,., in contrast to a naive expectation that the yz
bands should be lowered in energy in this case. When on-site
interactions bring the three-orbital model closer to the SDW
transition (see Sec. III B below), the orbital densities become
almost equal with n,, —n,; ~ —0.012 for U = 1 eV. Total
orbital densities can determine magnetic properties via the
Goodenough-Kanamori rules in Mott insulators, which do not
have a FS. On the other hand, since the pnictides are more
metallic with strongly hybridized orbitals, a more consistent
and clearer picture can here be obtained if one concentrates on
the spectral weight near the Fermi level as will be discussed
below.

B. Impact of on-site Coulomb interaction

In this section the impact of on-site interactions will be
investigated. The full Eq. (8) including spin-flip and pair-
hopping terms can easily be included in the VCA. Interaction
strengths were chosen below the critical values for the onset
of long-range order because we want to focus on short-range
correlations here. As can be seen in Fig. 5 for the two models
considered here, lower values of J,,;s ~ 0.2 are now sufficient
to induce substantial asymmetries, in contrast to the larger
Janis & 0.4 to 0.5 eV needed for the noninteracting models.
On-site interactions favor local magnetic moments, even in
the absence of long-range order, that can then be coupled even
by weaker Jyps.

Finally, we study the three-orbital model very close to
the SDW transition by setting U = 1.02eV. In a mean-
field treatment as used in Ref. 23, one finds an SDW with
long-range magnetic order, but the optimal VCA solution
does not yet show long-range order due to the presence of
quantum fluctuations. However, the system is so close to a
magnetically ordered state that very small J,,;s & 0.015 eV =
15 meV already introduces strong short-range order and
corresponding band anisotropies. Several occupied low-energy
bands [e.g., between I' = (0,0) and ¥ = (0,7) as well as
around M = (;r,7)] in the spectral density, which is shown in
Fig. 5(c), have energies reduced by a factor of &~ 2, consistent
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FIG. 5. (Color online) Spectral density with anisotropic short-
range magnetic order and on-site interactions. (a) For the four-orbital
model and U = 0.3 eV, Jyua = 0.075 eV and J,,;s = 0.2 eV. (b)
For the three-orbital model with U = 0.6 eV (Jyuq = 0.15 eV) and
Janis = 0.2 eV and (¢) U = 1.02 eV (Jyguna = 0.255 eV) and J,,is =
0.015 eV. For these last values of U and Jyq, the three-orbital model
is very close to the SDW. (d) FS corresponding to the parameters
in (c), it captures the spectral weight within 1 meV of the Fermi
level; broadening of the spectral weight is consistent with (c). On-site
interactions are lower for the four-orbital model, because it is at half
filling, and thus Hund’s rule moves it closer to a Mott transition,
while it partly compensates U away from half filling, as in the three-
orbital model. Shadings are for real momentum; lines indicate the
noninteracting model in pseudocrystal momentum k.

with the renormalization factor ~2-3 needed to reconcile
density-functional bands with ARPES. Bands above the Fermi
level do not have reduced widths. This asymmetric impact
of correlations is in agreement with dynamical mean-field
studies.’” In addition to the renormalization, Juis = 15 meV
induces an energy splitting of ~70 meV between the X and
Y points. In fact, the band at X has moved slightly above the
chemical potential, as expected for the SDW phase. The fact
that this happens even in the absence of long-range order, is
in excellent agreement with recent ARPES data for NaFeAs,
where it was likewise found that the overall band positions
at X and Y nearly reach their “SDW values” above the Néel
temperature.’

Nevertheless, the corresponding FS [see Fig. 5(d)] clearly
shows important differences to that of the SDW state: As the
yz states cross the chemical potential here with a rather low
Fermi velocity (leading to an elongation of the hole pocket at I"
along the x direction), they contribute substantial weight to the
FS. In fact, both of the strong features along the I'-X line are
of yz character. In the SDW phase, in contrast, the yz orbital
dominates the AFM order parameter and is thus mostly gapped
out.’® Related effects have likewise been observed in ARPES,
where these yz bands open gaps at the Néel temperature.®8

IV. SUMMARY AND CONCLUSIONS

The variational cluster approach was used to study the
spectral density of a nematic phase in three- and four-orbital
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models for iron-based superconductors. We found that the
method is well suited for problems involving short-range
correlations without long-range (magnetic) order. The corre-
lations considered in this study were extremely short range,
going only over NN sites, the minimum to break rotational
invariance. While this is a somewhat extreme scenario, it has
been argued that magnetic correlations that are effective only
on a very short range lead to the linear temperature dependence
of the magnetic susceptibility at high temperatures.’* Nuclear
quadrupole resonance®” indicates that there are As ions seeing
different electronic surroundings in the “underdoped regime,
which would be in agreement with the present scenario of As
ions involved in “magnetic” vs “nonmagnetic” bonds.

When symmetry between the x and y directions is broken
by a phenomenological magnetic interaction that is AFM
in the x direction, the bands with yz character around
momentum X = (;r,0) move to higher energies, i.e., closer
to the Fermi level. This is in agreement with ARPES on
detwinned samples above the magnetic transition temperature,
in both the “122” compound Ba(Fe;_,Co,),As,,” and the
“111” compound NaFeAs.®!° The latter is not expected to have
surface states*! that might complicate the analysis of ARPES
in 122 compounds.*? The changes in the band structure due
to the nematic order not only depend on the orbital, but also
on momentum. Changes around the I" = (0,0) point are far
less pronounced than differences between X and Y, again in
agreement with ARPES.®"'” Total orbital densities and their
difference are model dependent and not a reliable predictor
of reconstructions of low-energy states. However, the orbital-
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resolved spectral weight and the bands near the Fermi level
are affected in the same way both in a three- and a four-orbital
model, with and without on-site interactions indicating that
they are more universal and less dependent on details of the
model Hamiltonian. In agreement with previous findings on
the orbital polarization of the FS in the SDW phase*® and
on transport properties,'>* this suggests that total (orbital)
densities are here less important than in Mott insulators, as the
metallic character of the pnictides makes states near the Fermi
level far more important than those further away.

When on-site interactions are strong enough to bring the
system close to the SDW transition, very small anisotropic cou-
plings can deform the bands until their broad features resemble
bands in the SDW regime, i.e., bands are renormalized by a
factor of ~2 and the yz states at X move above the chemical
potential, as seen in ARPES on NaFeAs just above the Néel
temperature.8 Nevertheless, the Fermi surface still differs from
that of a state with full long-range magnetic order, where the
yz states are mostly gapped out,’*3® again in agreement with
ARPES.®
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