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Abstract. The perspective of the author on the important and rapidly growing role
of computational techniques in Theoretical Condensed Matter Physics is provided.
A brief summary of each of the chapters of the book is also included in this Foreword.

1.1 Introduction

In elementary courses of Condensed Matter Physics, students learn that a
good description of the electronic properties of simple metals, such as cop-
per or silver, can be obtained via the one-electron approximation. The main
assumption of this approximation, which works remarkably well for good met-
als, is that you can solve the quantum mechanical problem of a particle in
a large box, mimicking the crystal, and then simply fill the individual levels
with spin-up and -down electrons until all the electrons that you wish to have
are properly located in states of the box, namely filling levels up to the Fermi
energy. Alert students often wonder how is that this miracle occurs since obvi-
ously electrons interact with one another via repulsive Coulombic forces, thus
invalidating the one-electron approximation. Elaborated rationalizations are
then invoked, based on the Fermi liquid ideas, to justify the neglect of those
interactions. But then typically these students will sooner or later attempt to
follow a similar rationale to study other more complex materials, discovering
with surprise that this “one electron” approximation fails miserably in most
cases. A famous example is provided by the copper-oxide high temperature
superconductors where naive one-electron estimations would predict the par-
ent compound to be a metal while in reality it is a Mott insulator precisely
due to the importance of those repulsive forces among the electrons. Then, in
general it is crucial to be able to move beyond “one electron” ideas to prop-
erly describe the physics of a wide variety of materials that are both of crucial
conceptual relevance and technical importance.
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However, properly taking into account the correlations between electrons
is much easier said than done. Students also know, from their quantum me-
chanical classes, how difficult it is to be accurate in problems of atomic physics
beyond the hydrogen atom, precisely due to that “pesky” Coulomb repulsion
between the electrons. Heroic attempts are being made to address the full
quantum mechanical Schrodinger equation of electrons in clusters of atoms
via Quantum Monte Carlo methods in the continuum, but these techniques
are not sufficiently developed to satisfy the vast needs that condensed matter
theorists have at present to describe the myriad of interesting novel phenom-
ena that our experimental colleagues almost daily unveil. Then, the most com-
mon path is to work with model Hamiltonians. These models are constructed
by hand under the assumptions that they must satisfy the known symme-
tries of the system, they must involve local or quasi local interactions, and in
general they have to be “reasonable” such as containing “electron hopping”
terms only among atoms at short distances from each other, and involving
the proper orbitals for electron tunneling to occur. The construction of these
models is typically a fun adventure, but then sooner or later the task of solving
the model arises and things rapidly become complicated: if we have trouble
studying say light atoms with a few electrons, the problem can only get worse
if the number of electrons is of the order of Avogadro’s number.

Fair is to say that clever approximations have been developed over the
years to study interacting many-body systems. For instance, the BCS theory of
superconductivity based on a simple variational state and the assumption that
a weak electron-electron attractive interaction arises from the time-retarded
interactions with phonons, addresses successfully a complex many-body prob-
lem. But in general only a small subset of interesting materials admits such
simple descriptions. Moreover, an important motive of present day Condensed
Matter Physics is the “competition” of states in families of compounds with
rich phase diagrams. These states can be reached in the laboratory by adding
or removing electrons, increasing pressures, turning on and off electric or mag-
netic fields, etc. Having a single “pen and pencil” formalism that allows the
study of competing, say insulating and metallic, states is very difficult, par-
ticularly if we aim to reach an accurate description of both states. Dealing
with complex many-body problems can indeed be frustrating.

Fortunately, the fast development of computers in recent times allows for
some hope. How about solving the quantum mechanical many-body problems,
with all the important interactions incorporated, using the help of computers?
Computers can manipulate large arrays of numbers in tiny amounts of time,
way beyond what any human can hope to do in a lifetime. In fact, we are wit-
nessing the slow evolution of the traditional theoretical physics mainly based
on pen and pencil calculations unto a more sophisticated enterprise that of-
ten involves large-scale computer simulations. While older generations carved
their intuition based on integrals over momentums and frequencies, new gen-
erations often think in real space and time and learn to visualize intuitively
the physics under discussion from the analysis of complex plots of data arising
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from the study of model Hamiltonians using elaborated computational tech-
niques. In fact, in my lifetime I have seen the raise of computational physics
from an early “supporting actor” role to a much more fundamental role in the
study of models and materials. Nowadays nobody blinks when a publication is
almost entirely based on results coming from computational efforts. Hopefully
the new generations will appreciate that this did not happen overnight, and
will thank in their hearts the pioneers that established computational physics
as a well respected, and currently rapidly growing, area of theoretical physics.

In this book, edited by Professors Adolfo Avella and Ferdinando Mancini,
the state of the art of computational methods to study model Hamiltonians is
presented. This volume is actually one component of a set of three books on
the general area of “Strongly Correlated Systems: Methods and Techniques,”
all of them edited by Avella and Mancini. The first volume, already published
recently by Springer, has the title “Theoretical Methods for Strongly Corre-
lated Systems,” and the focus is on analytical studies of correlated electrons.
A personal observation here about the title of this first book: note that com-
putational physics is a rapidly growing subset of theoretical physics. Thus,
describing analytical methods as “theoretical” and computational methods as
a separate entity often called “numerical” is incorrect. Both analytical and nu-
merical methods are different methods used to address theoretical physics. The
second book in this series is the one you have in your hands now. The third will
address “Experimental Techniques for Strongly Correlated Systems.” Having
a global view of correlated electrons, via its analytical and computational
theoretical perspectives and also the experimental component will be very
beneficial to young scientists entering into this field.

Returning to the Foreword for this book, note that having powerful compu-
tational techniques to carry out the numerical investigations is crucial, because
although my casual writing above (“let the computers do the work”) may im-
ply that this is relatively easy, in practice it is certainly not. To start with,
most of the computational studies are carried out using finite small systems,
with the hope of performing a systematic study of many sizes and then an
extrapolation to the bulk limit. For this reason, accurate and powerful meth-
ods are needed that can handle large clusters. Moreover, sometimes there are
subtleties, such as the effect known as the “sign problem” that is widely dis-
cussed in several chapters of this book. This effect can certainly spoil the fun
of a project. Thus, it is important to be aware of what sort of techniques are
available in the literature for the handling of a particular problem of interest
to the reader. Let me make this point clear: there is no single computational
technique at present that can handle any problem of your choice, but each
method presented in the many chapters of this book has a limited range of
applicability. Young theoretical physicists reading this text should become fa-
miliar with all of the methods presented here, and particularly remember the
type of problems that each technique is good for.

In the rest of this foreword, I will present a brief description of each of the
many chapters of this book (following the order in which they appear), aiming
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to summarize the essence of each method. But, of course, readers should use
my writing only as a stepping stone into the real important portion of the
book that are the individual chapters. I will also resist the temptation of
citing literature in this foreword, so that readers will have to consult the
many chapters to gather that important information.

1.2 Lanczos Exact Solution of Small Clusters

In Chapter 1, P. Prelovsek and J. Bonca describe the Lanczos method, often
casually referred to as Exact Diagonalization, both at zero and finite tem-
perature. The essence of this technique is to solve exactly a small cluster of
the model Hamiltonian that is under study. While the exponential growth of
Hilbert spaces often limits the applicability of this technique to very small
systems, the reason for its popularity is that it can be applied to all the fam-
ilies of models that are frequently used in the correlated electron context,
although with a cluster size that shrinks fast with the number of degrees of
freedom per site. In these regards the technique is flexible and moreover it
is truly unbiased: the exact properties of the model in the small cluster used
will be obtained as an answer, as opposed to a crude approximation to those
properties. Typically, after a Lanczos analysis unveils a particular tendency
to spin, charge, or orbital order at the short distances that fit into the small
cluster that was solved exactly, then other computational techniques or mean-
field approximations can be employed to address larger systems. Reciprocally,
the Lanczos method can also be used to confirm ideas, such as proposed vari-
ational states, or to gather numerical information to be used as benchmark
to judge the accuracy of other computational methods. Lanczos has the im-
portant advantage over other algorithms that it can also be used to gather
dynamical information, both in the form of spectral functions or as real-time
evolutions of states, the latter including studies far from equilibrium.

Prelovsek and Bonéa also describe in Chapter 1 variations of the Lanczos
technique, such as the High Temperature expansion method where a reduced
set of randomly chosen states are used, as in Monte Carlo procedures. The
calculations are carried out for all temperatures simultaneously. Applications
of this finite-temperature Lanczos method include the study of the famous
two-dimensional ¢-J model for Cu-oxide high temperature superconductors,
addressing subtle issues such as the presence of non-Fermi liquid behavior, the
exotic linear resistivities unveiled at optimal hole doping in the cuprates, the
existence of pseudogap regions in the underdoped regime, and others. Also
recent variations of the Lanczos technique are presented in this chapter, such
as the “low temperature” and “microcanonical” Lanczos methods, and even
the use of a reduced or truncated basis set, illustrated with the example of
adding phonons, that is in the spirit of the DMRG technique described in the
next chapters of this book.
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1.3 Density Matrix Renormalization Group, Matrix
Product States, and the Multi-scale Entanglement
Renormalization Ansatz

To improve on the severe size limitations of the Exact Diagonalization or
Lanczos method, the Density Matrix Renormalization Group (DMRG) tech-
nique was developed by S. White, and four chapters of this book are devoted
to this technique (three of them being reviewed here in this subsection simul-
taneously), including recent variations and improvements. In Chapter 2, A.
Feiguin introduces the reader to the DMRG method by first explaining the
fast growth of Hilbert spaces with the number of spins using the spin-1/2
Heisenberg model as illustration. This example clearly shows that to study
large systems, a clever basis truncation procedure is needed. In the early days,
the Renormalization Group method of K. Wilson was used to construct an ap-
proximate basis and the technique worked nicely in several cases. But consider
for instance the simple problem of just one electron hopping between nearest-
neighbor sites along a chain of length L with open boundary conditions, and
suppose we wish to get a good approximation to its ground state by knowing
the properties of a chain of length L/2. The ground state wave function of
the L/2 chain has the shape of a cosine function, with nodes at both ends of
the chain. If we naively assume that the ground state for the case of length L
can be approximated by gluing the two ground states of length L/2, then we
are generating a spurious node at the center, since we know that the ground
state of L only has nodes at the extremes of the chain. Then, the energy alone
cannot be the best indicator for how to select a proper truncated basis. As
Feiguin explains, it is much better to use the reduced density matrix to select
that reduced basis since in this quantity the connection between the two por-
tions of the problem, and their potential quantum mechanical entanglement,
is included. Based on these ideas the DMRG method emerges and certainly
this technique is the method of choice for quasi one dimensional electronic
model Hamiltonians.

Feiguin explains also the limitations of the DMRG method. For instance,
in the early days it was common practice to use the “infinite” system varia-
tion of DMRG, but nowadays it is known that addressing finite systems and
then extrapolating to the bulk is the best way to go. And of course, carefully
analyzing how the results change with the number of states m is a must, since
sometimes the behavior of observables with increasing m is not smooth, due to
occasional “tunneling” into regions of the Hilbert space that were not included
for a smaller m. Another limitation is the generalization to two dimensional
systems: in fact if we order the sites of a finite ladder or truly two dimensional
lattice via a “snake” procedure to reduce it to a one-dimensional arrangement,
it is clear that in the 1D language the hopping terms and interactions, that are
not on-site, will develop a long-range character that always complicates any
algorithm. Fortunately, considerable progress is being made via the concept
of entanglement entropy that allows to understand why the DMRG number
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of states m that is needed in 2D grows very fast with the number of sites
(following an “area law”, see also Chapter 3 by U. Schollwock). The entan-
glement entropy is an important concept that establishes that two systems A
and B are disentangled when the wave function of the system is merely the
product of the wave functions of the individual components, while they are
maximally entangled when the state of A uniquely establishes the state of B
and vice versa. DMRG in fact minimizes the loss of information related with
the entanglement of the components.

The DMRG-related novel area based on the “Matrix Product States”
(MPS) is presented in detail by U. Schollwock in Chapter 3 (this topic is
also mentioned in Chapter 2 by Feiguin). Starting with the mathematical dis-
cussion of the main ideas, an example based on the Heisenberg model helps in
clarifying the formalism. The MPS perspective establishes DMRG as a varia-
tional method in the space of matrix product states, allowing for extensions of
the method and a deeper conceptual understanding. The connection between
the MPS perspective and the original DMRG algorithm is explained in this
chapter. Overall, it is clear that although the novel approaches are not yet in
practice better than the original DMRG, surprises may be found in the near
future as research in this active field continues progressing based on the MPS
perspective.

In Chapter 4, G. Evenbly and G. Vidal describe the notion of “tensor net-
work states” as variational states to characterize lattice quantum many-body
systems. The number of parameters in this case is much smaller than the ex-
ponentially large dimension of the Hilbert space with increasing lattice size.
These tensor network states can be classified based on the physical geometry
of the system or via the holographic geometry, where an additional dimen-
sion parametrizing different length or energy scales is introduced. The focus
of Chapter 4 is on the latter, in particular on the Multi-scale Entanglement
Renormalization Ansatz (MERA) to study critical systems in one-dimensional
geometries, aiming to properly capture the scale invariance of these systems.
The authors describe in detail all the properties of the MERA method and
compare with other techniques, and they also explain how to deal with sym-
metries. In addition, benchmark results are provided using the critical Ising
model and other critical systems, and comparison with results of other meth-
ods are discussed. The conclusion of these comparisons is that the MERA
method indeed produces better correlators at large distances for critical sys-
tems, as the method was originally designed to achieve.

1.4 Time-dependent DMRG

In Chapter 5, A. Feiguin explains the time-dependent DMRG method (this
topic was also discussed in Chapter 3 by Schollwéck). This technique allows
for the study of real-time dynamics (i.e. not imaginary time but real) and it
can provide spectral functions with frequency dependence and also results far
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from equilibrium. Feiguin explains that as time grows adapting (i.e. changing)
the basis is crucial, because the “truncated” or optimal basis for the ground
state is not necessarily the same basis that is needed for the state during
the time evolution. For instance, this becomes clear for the case of strong
perturbations that will drive the system away from the equilibrium state that
existed before the perturbation was turned on. In this case, other areas of
the Hilbert space may become relevant as, for example, occurs when a steady
current develops due to a strong electric field. Thus, it is important to keep
track of the entire time-evolution of the wave function: in fact, the propagation
of the wave functions becomes the main purpose of the algorithm.

Feiguin explains that the Suzuki-Trotter approach is a natural procedure to
break the time evolution operator. It introduces a discretization i.e. a “Trotter
error” that is under reasonable control in practice since this error can always
be reduced by reducing the time-step length, of course at the cost of increasing
the computer time of the study. In addition, the advantages of the Runge-
Kutta integration for this type of methods are discussed in this chapter via
concrete examples. Moreover, a similar evolution but in imaginary time can be
used to obtain results at finite temperatures, showing the formal similarities
with the real-time evolution.

The time-dependent DMRG technique is widely applied these days to
problems that range from transport through quantum dots to non-equilibrium
physics in the context of cold atoms. In the former, the introduction of a sud-
den bias to generate a current is often employed, and a plateau in the current
vs. time is formed in a finite window of time (due to the open boundary con-
ditions, eventually the current will bounce back). Thus, the I-V curve can
be studied for those quasi-stationary currents. Several other time-dependent
correlation functions can be calculated as well. Feiguin also describes the “en-
emies” of these methods: they are related with the entanglement entropy, and
with the abrupt vs. adiabatic introduction of modifications in the Hamilto-
nian. For instance, to study the effects of a strong perturbation it may be
advantageous to turn on this perturbation “slowly” so that the system has
time to select the proper basis to describe the new system.

1.5 Loop Algorithm

In Chapter 6, S. Todo explains how a quantum model can be mapped into a
classical model by adding another dimension related with temperature, which
is then discretized in steps. This is equivalent to working in imaginary time.
Moreover, Todo also explains that there is a continuous-time path-integral
representation that can be alternatively used. The world-line configurations
are introduced for the stochastic sampling, involving products of matrix el-
ements, and it is emphasized that millions of spins can be handled by this
procedure. However, note that these matrix elements can be negative, thus
leading to “sign problems” which of course introduces a limitation in the type
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of models that can be handled with these technique. While this is a complica-
tion difficult to avoid, Todo discusses that another typical problem of Monte
Carlo simulations, the slowing down of the simulations at low temperatures
or near criticality, can actually be improved upon or eliminated all together
via cluster algorithms where groups of spins are simultaneously flipped, in-
stead of using individual spins for the updates. This reduces critical slowing
down near continuous phase transitions, particularly if the cluster sizes are
chosen based on the correlation lengths of the problem. Another procedure to
avoid the lack of ergodicity addresses global constraints in the simulation, via
a generalization of phase space. In this case auxiliary variables are introduced
that represent constraints in the spin system, to fight conservation rules that
make the single site update procedure useless. For instance, if the total spin
S, must be conserved, the flip of a spin will always be rejected. For this rea-
son, procedures involving bonds as opposed to single sites are sometimes more
natural. Thus, the ability of the programmer is needed to identify the correct
variables to use to carry out the simulations in an efficient manner. In the case
of the spin-1/2 antiferromgnetic Heisenberg chain, introducing the imaginary
time direction leads to a representation in terms of loops that thus becomes
an integral part in the updating process.

1.6 Stochastic Series Expansion

In Chapter 7, R. Melko discusses the Stochastic Series Expansion (SSE) tech-
nique, which is a very efficient quantum Monte Carlo method for quantum
lattice models. This technique was originally devised by A. Sandvik as a finite-
temperature simulation based on a Taylor expansion of the partition function.
The method is easy to implement and applies to quantum spins and bosons, as
long as they do not have the “sign problem.” As simple examples, Melko dis-
cusses the spin-1/2 isotropic Heisenberg model and the Ising model in a trans-
verse field. In general a quantum D dimensional problem must be mapped into
a D+1 dimensional classical representation incorporating an imaginary time
axis to allow for its implementation in classical computers. In the SSE method
the trace of products of the Hamiltonian are evaluated stochastically, formally
via path integral or world-line representations. Cluster and loop algorithms
are used to speed up the simulation and allow for ergodicity. More recently, the
method has been reformulated to become applicable to the zero-temperature
projector method, where a large power of the Hamiltonian is applied to a trial
wavefunction to project out the ground state. Both methods are in principle
conceptually quite different, but their implementation via non-local loop or
cluster algorithms reveals an underlying similarity, as discussed by Melko via
the example of the Heisenberg model in a valence bond basis.



1 Foreword 9

1.7 Quantum and Variational Monte Carlo

In Chapter 8, S. Sorella discusses the very powerful Quantum Monte Carlo
(QMC) technique and the associated Variational Monte Carlo method. For
model Hamiltonians and in regions of parameter space where QMC “works”,
namely where there are no “sign problems” or other technical inconveniences,
then the QMC method is very powerful and addresses exactly (within sta-
tistical errors) the physics of the model under investigation. Sorella explains
that the somewhat tedious process of gathering statistics to reduce error bars
can be easily parallelized by running different realizations of the Monte Carlo
evolution at different nodes of a computer cluster. For instance, after arriving
to an equilibrium configuration, at each node a different “random number
set” can be used to continue the runs with that configuration as a start. The
results of the many Monte Carlo time evolutions at those different nodes can
be eventually gathered at the end of the runs to construct averages. Consid-
ering that there are supercomputers with ~100,000 nodes these days, clearly
this procedure is advantageous since its scalability adapts to the number of
nodes available. Of course we must be aware of the complications that arise
in QMC and similar algorithms when we are near criticality since in these
cases the self-correlation time diverges (namely the number of Monte Carlo
steps needed to generate statistically independent equilibrium configurations
diverges at second order transitions). And of course we must worry about
sign problems, as explained before. But where it works, QMC is indeed very
powerful and unbiased.

With regards to the Variational Monte Carlo method (VMC), the rela-
tion with QMC arises from the need to calculate the expectation values in
the variational state via a Monte Carlo stochastic process. Definitely start-
ing with a “good” wave function is a must for accuracy, and Sorella uses the
case of the Gutzwiller wave function to illustrate how a simple projector op-
erator that removes doubly occupied sites can make an important difference
for the case of the famous (or infamous depending on your view) Hubbard
model. Dealing with many-body variational wave functions often illuminates
the physics under discussion, thus VMC tends to provide qualitative insight
on the problem studied even if it is not as precise and unbiased as QMC is.
Since the Nobel prizes for the BCS theory of superconductivity and the Frac-
tional Quantum Hall effect were essentially given for proposing an excellent
(and simple) multi-electronic variational wave function, it is clear that vari-
ational approaches have some appeal. These days VMC can be carried out
with a very large number of free parameters to optimize, and moreover there
are proposed methods to systematically improve a starting wave function.
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1.8 Coupled Cluster Technique for Quantum Chemistry
and Nuclear Physics

In Chapter 9, K. Kowalski et al. describe the coupled cluster (CC) formal-
ism. This is a widely employed and accurate method for the solution of the
Schrédinger equation in molecules and other intrinsically finite systems. For
instance, the technique is mainly applied in the context of computational
chemistry but it is also used in nuclear physics. Correlation many-body ef-
fects are properly captured by the CC formalism, contrary to perturbative
methods. These correlation effects are crucial to understand molecular struc-
tures, chemical reactions, and bond-forming/bond-breaking processes.

The CC method starts with an exponential Ansatz involving the exponen-
tial of the cluster operator 7" acting over a single Slater determinant, such
as the one arising from the Hartree-Fock approximation. T  is a sum over the
many-body components. The authors explain that including higher order ex-
citations in the process comes at a high numerical price, leading to severe
limitations of the straightforward procedure even for relatively small systems.
But the authors also explain that there are several interesting improvements
to deal with this problem, including the use of leadership class computer archi-
tectures. Often the cases of the HoO and CO5 molecules are used as examples
to judge the accuracy of the results, and in some tests, up to 210,000 cores
of supercomputers have been used. Extensions to the always complex case
where there are quasi-degenerate states are also presented by the authors. In
the rest of the chapter, the several variations of the methodology are reviewed
with considerable detail. It is concluded that at present accurate calculations
can be carried out for 200-300 correlated electrons with 1300-1500 basis set
functions.

1.9 Monte Carlo Methods for Diagrammatic Series

Chapter 10 by N. Prokof’ev reviews the basic principles of the Diagrammatic
Monte Carlo (DiagMC) and the Worm Algorithm techniques. With regards
to DiagMC, the simpler case that comes to mind are the Feynman diagrams
as they appear in standard perturbative formulations of Quantum Electro-
dynamics, or in similar diagrammatic formulations of problems of Condensed
Matter Physics. The DiagMC method discussed in this chapter is generic and
simply aims towards an accurate estimation of a sum of multiple integrals.
However, Prokof’ev clarifies that DiagMC is fundamentally different from sim-
ply listing all diagrams of order say less than a maximum number, and then
evaluating via Monte Carlo each integral one by one. In fact, in DiagMC the
order of the diagram, their topology, and internal and external variables are
all treated on equal footing, and each diagram represents a “point” in a gen-
eralized configuration space. A unique feature of DiagMC is that instead of
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addressing finite systems with increasing size as in most computational tech-
niques described in this book, the technique applies directly to the Feynman
diagram series. Thus, results are obtained already in the thermodynamic limit
and at any temperature.

Prokof’ev addresses the “sign blessing” issue (as opposed to the “sign
problem” issue widely discussed in other chapters): due to the fact that the
Feynman diagrams can be positive or negative, the apparent fast growth of
the number of diagrams with their order, and the associated impression that
the series are just asymptotic, is removed by the sign alternation. In fact, it
is thanks to the sign blessing in this context that the series do converge.

With regards to the Worm Algorithm, this technique allows for a better
sampling of configuration space in cases where this space has a complex topol-
ogy and/or global constraints, which usually induce complications in standard
Monte Carlo methods based on local updates, since the Monte Carlo time
evolution leads to nominal equilibrium states that are actually trapped in a
portion of the configuration space. In this case, there are ergodicity problems
since not all sectors of configuration space are equally sampled. In practice,
the method is based on enlarging the original configuration space with the
original constraints into a larger space without those constraints. This facil-
itates the “tunneling” between different sectors. Examples dealing with the
Ising, XY, and bosonic models are discussed in this chapter.

1.10 Continuous Time Quantum Monte Carlo

In Chapter 11, E. Gull and M. Troyer provide an introduction to “continuous
time quantum Monte Carlo” (CT-QMC) methods for fermions. The descrip-
tion includes both lattice models, such as the Hubbard model, and quan-
tum impurity problems, such as the Anderson impurity problem describing
a magnetic atom embedded in a non-interacting medium. Impurity problems
formally appear also in the solution of the Dynamical Mean Field Theory
(DMFT) equations, and it is in this area where CT-QMC methods are used
the most frequently at present. CT-QMC is based on the stochastic sam-
pling of time-dependent diagrammatic perturbation theory, as described by
Prokof’ev in Chapter 10. Time is continuous from the beginning, since there is
no need to discretize this dimension, contrary to what is done in many other
techniques presented in this book. Gull and Troyer explain that at present
there are already several types of extensions of this method (called hybridiza-
tion, interaction, and auxiliary method) with different areas of applicability.
These three variations are explained in detail in the bulk of the chapter. The
authors include an introduction to the general diagrammatic Monte Carlo for-
mulation, with sums involving not only the order of the diagrams but also their
topology in order for ergodicity to be satisfied (see Chapter 10 by Prokof’ev).
The issue of the sign problem is also discussed, and it is concluded that in
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impurity problems, this complication is not as severe as in finite-sized lattice
models.

In the second half of the chapter, the authors provide several examples that
illustrate the wide range of applicability of the continuous-time methods. The
examples include Kondo problems and quantum dots, single-site and cluster
DMFT, the three-dimensional Hubbard model above the critical temperature
for antiferromagnetism, LDA+DMFT approaches to real materials, and even
real-time dynamical methods.

1.11 Summary

In this Foreword, my goal has been to transmit to the readers my profound
enthusiasm for the field of research centered at the computational studies of
model Hamiltonians. With just a few exceptions, it is difficult to find analyti-
cal techniques that are reliable for the study of a particular model in the area
of Strongly Correlated Electrons since usually there is no small parameter to
use in an expansion. Thus, after applying those techniques we always have
the uneasy feeling of not really knowing if the results are accurate. However,
with the use of computational methods, calculations can have a much more
robust foundation. Employing the computer for the study of a model has the
feeling of an experiment: you can ask clever “questions” to the “sample” un-
der study, analyze data, and come up with an intuitive picture of what is
happening. Very often the computer results are not what we were expecting
a priori, thus there is a neat back and forth process until a convergence to a
firm conclusion is reached. The many chapters in this book illustrate on how
sophisticated the computational methods have become in recent years, with
plenty of interesting new tricks and perspectives being developed and applied
to address challenging issues in the study of a variety of model Hamiltonians.
And in the meantime, while we work hard on this type of problems, the com-
puter industry is constantly improving the machines that we use in our effort!
For all these reasons, I am convinced that this area of research has a promising
future and hopefully it will continue to attract outstanding researchers such
as the many authors of the chapters contained in this book.
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