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Magnetic phase diagram of a five-orbital Hubbard model in the real-space
Hartree-Fock approximation varying the electronic density
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Using the real-space Hartree-Fock approximation, the magnetic phase diagram of a five-orbital Hubbard
model for the iron-based superconductors is studied varying the electronic density n in the range from five to
seven electrons per transition metal atom. The Hubbard interaction U is also varied, at a fixed Hund coupling
J/U = 0.25. Several qualitative trends and a variety of competing magnetic states are observed. At n = 5,
a robust G-type antiferromagnetic insulator is found, in agreement with experimental results for BaMn2As2.
As n increases away from 5, magnetic states with an increasing number of nearest-neighbors ferromagnetic
links become energetically stable. This includes the well-known C-type antiferromagnetic state at n = 6, the
E-phase known to exist in FeTe, and also a variety of novel states not found yet experimentally, some of them
involving blocks of ferromagnetically oriented spins. Regions of phase separation, as in Mn oxides, have also
been detected. Comparison to previous theoretical investigations indicate that these qualitative trends may be
generic characteristics of phase diagrams of multi-orbital Hubbard models.
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I. INTRODUCTION

The study of iron-based high critical temperature supercon-
ductors continues attracting the attention of the condensed mat-
ter community [1]. Early theoretical investigations suggested
a relatively simple picture of the magnetic and superconduct-
ing properties as arising from weak-coupling Fermi surface
nesting effects. However, recent experimental and theoretical
studies have unveiled a variety of compounds and chemical
compositions that display a more complex physics where
intermediate-range electronic repulsion effects cannot be
neglected [2]. In particular, there are materials with no Fermi
surface nesting that nevertheless become superconducting, and
there are compounds with a very large magnetic moment in the
ground state that do not fit into the weak-coupling picture [3].
Moreover, at room temperature clear indications of local
magnetic moments exist [4], incompatible with weak-coupling
scenarios where the formation of moments and the long-range
order develop simultaneously upon cooling.

For these reasons, a more serious consideration of the
effects of the Hubbard on-site repulsion U and on-site Hund
coupling J is needed. While this task is in principle difficult
due to the scarcity of unbiased many-body techniques that can
handle a multiorbital Hubbard model, the use of mean-field
approximations can at least unveil qualitative tendencies in
phase diagrams and the characteristics of the dominant states.
In fact, the Hartree and Hartree-Fock approximations have
been recently successfully used by our group [5,6] and
others [7,8] to study the dominant states in the presence of
the

√
5 × √

5 distribution of iron vacancies that exists in
some selenides [9] and also for the case of two-leg ladder
geometries [10]. In all these cases, the phase diagrams involve
several different magnetic states and for this reason phase
competition is anticipated to occur.

Also in more recent times, a novel avenue of research moti-
vated by the iron-based superconductors has been expanding.
It consists of replacing entirely Fe by another 3d transition
element such as Mn or Co. The average electronic population

of these elements in the new compounds is different from that
of iron, but the crystal structures are similar. Thus, as a first
approximation this chemical substitution effectively amounts
to exploring the effects of varying substantially the electronic
density away from the original density of the iron-based
materials. For example, in the case of the 100% replacement
of Fe by Mn, the compound BaMn2As2 was found to develop
a G-type antiferromagnetic (AFM) state with staggered spin
order, a Néel temperature of 625 K, and a magnetic moment of
3.88μB/Mn at low temperatures [11]. The G-type AFM order
is very robust, as recent investigations of Ba1−xKxMn2As2

have unveiled [12]. This state emerges naturally from the
population n = 5 at each Mn atom, namely one electron per
3d orbital. In the other limit of full Co substitution for Fe, such
as for the case of SrCo2As2, the material has a complex Fermi
surface and there are tendencies to magnetic order in the form
of spin fluctuations in the C-type channel [13], although ab
initio calculations suggest that a ferromagnetic instability can
also occur (for a list of recent references see Ref. [13]). Note
that ferromagnetic tendencies have been reported for LaCoOX

(X = P,As) as well [14].
These interesting recent studies motivated the model

Hamiltonian investigations reported here, where the electronic
density per transition metal atom n is allowed to vary over
a wide range, centered at the n = 6 value corresponding to
pnictides and selenides where the ground state is a C-type
antiferromagnet. In previous efforts, the G-type AFM state
at n = 5 was already reported [15,16]. Other investigations
assigned a crucial role to the n = 5 G-type AFM state to
understand the physics of the n = 6 limit [17]. In some
studies the superconducting state of pnictides was visualized
as emerging from the n = 5 G-type insulator [18] as opposed
to being induced from the C-type antiferromagnetic metal
of n = 6. All these previous efforts provided additional
motivation for our studies. Thus, drastically altering the
electronic concentration far away from n = 6 may lead to
interesting perspectives to understand the pnictide and selenide
superconductors.
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The main result of this publication is the phase diagram of
a five-orbital Hubbard model in the real-space Hartree-Fock
approximation, varying U at fixed J/U and, more importantly,
the electronic density from n = 5 to 7. Three main tendencies
have been identified. (i) There are multiple magnetic states
competing for space in the phase diagram. This is indicative
of a complex landscape of free energies. The results are
compatible with several states already unveiled experimentally
for different compounds [1,3], and with other recent mean-field
studies as well [15,16], but there are phases in the present
theoretical phase diagram that are novel and worth searching
for experimentally. (ii) The general tendency in the evolution
of the magnetic states with increasing n is to evolve from the
G-AFM state at n = 5 to states with more ferromagnetic links
as n = 7 is approached, particularly at robust J/U . (iii) There
are regions in the phase diagram that present the phenomenon
of phase separation. This phenomenon was widely discussed
before in manganites [19–22] and in cuprates [23], but it
was only recently that this effect has been mentioned in the
context of the iron-based superconductors; their consequences
are still unclear. Our present conclusions are compatible
with theoretical results by other groups that also reported
phase separation tendencies [15,24,25], and also with previous
investigations by our group that revealed the presence of stripes
in some models [6].

The organization of the results is the following. In Sec. II,
the model and details of the calculations are explained. In
Sec. III, the main results and phase diagram are presented.
Sections IV and V include the results addressing the density-
of-states and phase separation tendencies, respectively. Finally,
conclusions are presented in Sec. VI.

II. MODEL

In this effort a five-orbital Hubbard model will be used, with
emphasis on the magnetic states that are obtained by varying
couplings and the electronic density n. Superconducting
tendencies will not be investigated in the present study. The
model used is exclusively based on electrons that are located
in the Fe 3d orbitals, widely believed to be the most relevant
orbitals at the Fermi surface for the pnictides and selenides.
Moreover, recent angle-resolved photoemission studies of
BaCo2As2 compared to BaFe2As2 suggested that a nearly rigid
shift of the Fermi level accounts for the complete substitution
of Co for Fe [26], thus further motivating our use of a single
model with varying chemical potential to study a variety of
materials.

The model includes a tight-binding term defined as

HTB =
∑

〈i,j〉

∑

α,β,σ

t
αβ

ij (c†i,α,σ cj,β,σ + H.c.), (1)

where c
†
i,α,σ creates an electron with spin σ at the orbital α of

the transition metal site i (a square lattice is used) and t
αβ

ij refers
to the tunneling amplitude of an electron hopping from orbital
α at site i to orbital β at site j. The Coulombic interacting
portion of the five-orbital Hubbard Hamiltonian is standard

and given by

Hint = U
∑

i,α

ni,α,↑ni,α,↓ + (U ′ − J/2)
∑

i,α<β

ni,αni,β

− 2J
∑

i,α<β

Si,α · Si,β

+ J
∑

i,α<β

(d†
i,α,↑d

†
i,α,↓di,β,↓di,β,↑ + H.c.), (2)

where α,β denote the five 3d orbitals with a label convention
defined in Table III below, Si,α (ni,α) is the spin (electronic
density) of orbital α at site i, and the relation U ′ = U − 2J

between the Kanamori parameters has been used. The first two
terms give the energy cost of having two electrons located in
the same orbital or in different orbitals, both at the same site,
respectively. The third term is the Hund’s coupling that favors
the ferromagnetic (FM) alignment of the spins in different
orbitals at the same lattice site. The “pair-hopping” is the
fourth term and its coupling is equal to J by symmetry.

With regards to the tight-binding parameters, the set of
hoppings used in the present effort is taken from Ref. [27],
which provides a Fermi surface that compares well with exper-
iments and band structure calculations for the pnictides. The
actual hoppings employed here are provided in Table III of the
Appendix. The approximate bandwidth W of the tight-binding
hopping term is 4.7 eV, and the ratio U/W should be used
to judge whether the phases of interest are or not, e.g., in the
strong-coupling regime where U/W ∼ 1. A ratio U/W ∼ 0.5
is more typical for the location of the experimentally relevant
phases based on previous Hartree-Fock investigations [2,6],
signaling an intermediate-coupling regime. However, note that
the quantum fluctuations not considered in mean-field studies
will tend to increase the critical values of U/W .

It is important to remark that a different set of tight-binding
parameters was provided in Ref. [28] (see their Tables VII and
VIII for nearest- and next-nearest neighbors Fe-Fe hopping
amplitudes), and in other publications as well. In the approach
of the authors of Ref. [28] the Fe-Fe hoppings are deduced in
the strong-coupling limit from a more fundamental Hubbard
model involving both the Fe and As atoms. Alternatively, in
Ref. [27] the Fe-Fe hoppings were simply chosen to reproduce
accurately the band structure calculation results at the Fermi
surface. Both are valid approaches, and our choice of one set
over the other is merely practical (in previous publications
by our group the set found in Ref. [27] had already been
used; repeating the same set of hoppings allowed us a better
comparison and cross-checks of previous and new results).
However, note that the overall conclusions of our study (such
as the transition from G-type AFM to stronger FM tendencies
varying the electronic density from 5.0 to 7.0) are sufficiently
generic that they are likely to be valid even if another set of
hopping amplitudes are used, although certainly the details
and actual critical couplings will change from set to set.

To study the ground-state properties of the multi-orbital
Hubbard model, the Hartree-Fock (HF) approximation will be
applied to the Coulombic interaction. The HF Hamiltonian is
solved by minimizing the energy via a numerical real-space
self-consistent iterative process that was widely discussed in
previous efforts [6,9,10]. All the HF expectation values are

045115-2



MAGNETIC PHASE DIAGRAM OF A FIVE-ORBITAL . . . PHYSICAL REVIEW B 89, 045115 (2014)

FIG. 1. (Color online) Magnetic states observed in the phase
diagram of the five-orbital Hubbard model used in this study, treated
in the Hartree-Fock (HF) approximation. These magnetic states are
named as follows: (a) C, (b) DC, (c) G, (d) Block, (e) GC, (f) E, and
(g) Flux.

initially assumed independent from site to site, which allows
the system to select spontaneously the state that minimizes
the HF energy, reducing the bias into the calculations. In the
self-consistent iterative process, initially all the HF expectation
values are set to random numbers, physically corresponding to
random initial states. The iterative process converges to states
that resemble uniformly ordered states, albeit still with some
deviations that are difficult to remove in the (slow) iterative
process. Inspired by the results obtained with random starts,
then fully ordered starting configurations are also used as
starting points for comparison. At the end, the ground states
are selected by comparing the final energies after convergence.
In Fig. 1 the set of relevant states that appeared spontaneously
in the real-space energy minimization used in the present
effort can be found. All the numerical results are obtained
using a real-space 8 × 8 square lattice with periodic boundary
conditions. The criteria of convergence is set so that the
changes of the individual HF expectation values are less than
10−4. Under these criteria, the typical number of iterations is

from 500 to 1000 if random initial states are used, and from
50 to 200 if the starting configurations correspond to ordered
states as those in Fig. 1.

III. MAIN RESULTS

A. Phase diagram

The effort described in this publication was computation-
ally intense since there were two parameters to change (U and
n; J/U was fixed to 0.25, a value considered realistic from
previous investigations [6]) and the real-space HF process is
typically characterized by a slow convergence in the iterative
process. The main result of this study is summarized in the HF
phase diagram of the five-orbital Hubbard model, varying the
on-site coupling U and electronic density n, shown in Fig. 2.

Let us now describe in detail the results. Starting at n = 5,
i.e., five electrons for the five 3d transition metal orbitals,
the state has a strong tendency to form a G-type AFM state.
This is to be expected given the electronic population, and
this result is in excellent agreement with experiments [11] for
BaMn2As2 and with previous theoretical efforts [15,17,18].
The robustness of the G-AFM state suggests that using
other hoppings’ amplitudes, such as those more quantitatively
adequate to describe BaMn2As2, will likely lead to similar
conclusions.

The G-AFM state has individual spins that are antiferro-
magnetically coupled to their four neighbors. As n increases,

U
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FIG. 2. (Color online) Phase diagram of the five-orbital Hubbard
model varying the on-site same-orbital repulsion U and the electronic
density n (number of electrons per transition metal site). The Hund
coupling was fixed to J/U = 0.25. The notation for the many states
was explained in Fig. 1. Light pink areas correspond to “phase
separation” (PS) regions where the energy vs. n curves have a negative
curvature (as described later in the paper). In practice, at least a vestige
of magnetic order is typically found in the numerical process even
for very small values of U . However, previous experience indicates
that this is likely a “paramagnetic” (PM) state since it is smoothly
connected to the U = 0 limit. Thus, in practice the PM state is defined
as the state where the order parameter m, of any kind, is smaller than
a cutoff chosen as 4% of the saturated value for the same state at
other densities or couplings. Since the order parameters often raise
steeply at the critical U that separates the PM from magnetic states,
then selecting other cutoffs give similar results. Note also that the
bandwidth W of the hopping term is 4.7 eV. With regards to the
shaded regions at electronic densities 5.0, 5.5, 6.0, 6.5, and 7.0, they
signal an insulating state based on the presence of a gap in the density
of states (for details see Sec. IV).
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growing tendencies toward developing more ferromagnetic
links are observed. In fact, the novel “GC” state (see Fig. 1)
is stabilized next when increasing n away from 5, and this
state has three AFM links and one FM link. This state can be
considered as a combination of the G-AFM and C-AFM states,
thus the notation GC. Its dominant wave vector is (π/2,π ), and
the state breaks rotational invariance between the two axes x

and y, as the C-AFM states does, but also has a staggered
order as the G-AFM state does, although involving 2 × 1
blocks. Thus, with hindsight it is not surprising to find this GC
state stabilized in between the G and C states. A somewhat
surprising result is that the area of stability of the GC state
also includes a region of weak U coupling at n = 6 where it is
widely believed that the C-type AFM state should dominate.
This C-AFM state indeed is stable in increasing U but not
at very weak coupling. Considering that recent Monte Carlo
computational studies including lattice distortions and using
three orbitals in the context of a spin-fermion model do favor
the C-AFM state [29,30], then probably the absence of lattice
degrees of freedom in the present effort may lead to a spurious
larger region of stability of the GC state that includes portions
of the n = 6 axis. Thus, it should be noted that the region of
true stability of the GC-AFM state may be smaller than the
HF approximation suggests, particularly after lattice effects
and quantum fluctuations are incorporated. In general, only
qualitative trends are expected to be robust in the present study
but not detailed quantitative aspects. The prediction arising
from this effort is that it would not be surprising to find the
GC state stabilized in materials where the relevant electronic
density is approximately n = 5.5.

As already mentioned, centered at n = 6 and for in-
termediate and large U the C-AFM state is stabilized, in
agreement with many experiments and several other theoretical
studies [1–3]. Since this state has been widely discussed before
in many contexts, there is no need to repeat those discussions
and the focus here now shifts to values of n larger than 6.
In this regime, several exotic states are stabilized in the HF
approximation. One of these novel states is the “Flux” state,
shown in Fig. 1(g). Note that this state is not collinear. A
similar state has been discussed before in the context of
two-orbital Hubbard models [31], and in small regions of the
phase diagram of a five-orbital Hubbard model defined on
two-leg ladders [10]. To our knowledge this Flux state has
not appeared in previous studies when using two-dimensional
geometries and five-orbital models, and it has not been
observed experimentally yet.

Another exotic and novel state stabilized at n larger than
6 is the double-C, “DC”, state shown in Fig. 1(b). The
notation double C is in reference to the doubled period in
one direction with respect to the well-known C state. This
DC state has a spin structure factor peaked at (0,π/2) or
(π/2,0) depending on the lattice instabilities that may appear
in a real system. This DC state is representative of the
previously mentioned growing ferromagnetic tendencies with
increasing n since each spin has three (one) ferromagnetically
(antiferromagnetically) aligned neighbors. It is conceivable
that with further increasing n and/or U and J , a fully
ferromagnetic state can be stabilized, as already observed in
previous HF approximation studies in other contexts such as
ladders and with iron vacancies [9,10]. Note also that from

our results near n = 7 (Fig. 2) there are no indications that the
C-type AFM state can become stable at such large electronic
densities, at least at the level of ground states. Thus, the recent
inelastic neutron scattering results [13] for SrCo2As2 reporting
C-type fluctuations remain paradoxical, and deserve further
studies.

In addition to the dominant G, GC, C, Flux, and DC
states, there are two small regions where two exotic states,
the E and Block states, are stabilized. These states need a
robust U to become stable (i.e., U/W ∼ 1 is needed for their
stability) and they have been mentioned in other contexts
before. For instance, the Block-AFM state is made of 2 × 2
FM blocks that are coupled antiferromagnetically. This state
was proposed to be the ground state of KFe2Se2 in previous
theoretical investigations [32]. A similar “Block” structure has
been unveiled experimentally and theoretically in materials
with iron vacancies [3,9] and also in selenides with two-leg
ladder geometries [10]. These Block states have individual
spins with two antiferromagnetic links and two ferromagnetic
links, thus their location next to the C-AFM state is reasonable
since they share this same property. This line of reasoning is
mainly of relevance for discussions involving localized spins,
as they occur at robust U . It is gratifying that the Block-AFM
appears spontaneously in our calculations without the need for
introducing lattice distortions.

The other exotic state stabilized in a small region at robust
U/W is the “E” state shown in Fig. 1(f). This state has a
peak in the spin structure factor located at (π/2,π/2), which is
compatible with experimental neutron scattering results [33]
for FeTe. Historically, the E phase was reported initially
in investigations of manganites [34]. The existence of the
E phase is also compatible with more recent theoretical studies
that used the spin-fermion model, involving a mixture of
localized and itinerant degrees of freedom with two active
orbitals [35]. The E state was also reported by another group
in previous investigations of a five-orbital Hubbard model,
using momentum-space mean-field and Heisenberg techniques
and a different set of hopping amplitudes [15]. Note that in
the previous publication Ref. [15] the E state was actually
called the DS state. Here, the historical notation that started
with the manganites is used and the state is called E. Note
also that recent investigations suggest ferro-orbital order and a
bond-order wave in Fe1.09Te in the regime of the E phase [36],
implying that the region where the E state is here reported to
be stable should deserve further study.

In summary, the four states G, C, E, and Block have
been observed before in different materials of the family of
iron-based superconductors and in other theoretical studies.
The possible stability of the three states GC, Flux, and DC,
are original predictions of the present study. Note that the
mean-field approximation used here tends to exaggerate the
presence of magnetic order. While the predictions are expected
to be reasonable at special density fractions such as n = 5.0,
5.5, 6.0,..., the phase diagram unveiled here at intermediate
values of n is at best indicative of qualitative tendencies
that may exist, perhaps only in the form of short-range
correlations. Also note that superconducting states have not
been proposed in this mean-field study, so the focus is only on
magnetic order (and its concomitant orbital order, as described
below).
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TABLE I. Magnetic moments of the seven competing states at
selected couplings and densities. The details are as follows: C state
(U = 3.0, n = 6.0); Flux state (U = 3.0, n = 6.5); G state (U = 3.0,
n = 5.0); GC state (U = 3.0, n = 5.5); E state (U = 5.0, n = 5.75);
Block state (U = 5.0, n = 6.25); DC state (U = 5.0, n = 6.75). The
∗ indicates phases where the magnetic moment is not the same at each
site. Typically, there are four sites that repeat themselves in most of
the cases, but sometimes the periodicity involves two sites or eight
sites. The numbers used for these states in the present table are their
average values.

xz yz x2-y2 xy z2 Total

C 0.9235 0.5426 0.5678 0.9499 0.7451 3.7289
Flux∗ 0.6094 0.6735 0.4812 0.8372 0.5693 3.1692
G 0.9475 0.9475 0.9242 0.9609 0.9682 4.7481
GC 0.9362 0.7853 0.7027 0.9540 0.8625 4.2407
E∗ 0.8589 0.8602 0.6063 0.9843 0.8702 4.1799
Block 0.8296 0.8296 0.6559 0.9573 0.3944 3.6667
DC 0.7632 0.6043 0.5470 0.9102 0.3611 3.1858

B. Magnetic order parameters

In Table I, characteristic magnetic moments of the seven
phases found in Fig. 2 are provided at representative couplings
and densities. The values shown tend to indicate a robust
magnetic moment. However, in the phases that are in contact
with the weak-coupling PM state in the phase diagram (i.e., the
G, GC, and Flux states), there is a region of rapid change in the
value of the magnetic moment when magnetism develops, as
shown in Figs. 3 and 4. Thus, values of the magnetic moments
weaker than those in Table I are also possible for some of the
phases.

In Fig. 3, the order parameter at n = 6 is explicitly shown,
varying U . While the C-AFM state that is stabilized at
intermediate and large U is to be expected, the presence of
the GC-AFM state in the weak-coupling regime is a surprise,
as already discussed. In view of the many approximations
involved in arriving to this state, it would be premature to claim
that the GC state should be stable in portions of the phase
diagram corresponding to the Fe-based compounds, but its
presence in the phase diagram can be considered as indicative
of a competition between many magnetic states. In practice,
other degrees of freedom, such as the lattice, are probably
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FIG. 3. (Color online) Hartree-Fock order parameters (Bohr
magneton units) vs. U at density n = 6.0 and J/U = 0.25. The
magnetic states GC and C have been presented in Fig. 1. The
bandwidth W is 4.7 eV.
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FIG. 4. (Color online) Hartree-Fock order parameters (Bohr
magneton units) vs. U at J/U = 0.25 and several electronic densities:
(a) n = 5.0; (b) n = 5.5; (c) n = 6.5; (d) n = 7.0. All the states
indicated are shown explicitly in Fig. 1.

crucial in deciding which state is the most stable in an actual
compound.

Similar results were obtained at other electronic densities,
as shown in Fig. 4. At n = 5, the G-AFM state is clearly
dominant, with an order parameter (in units of the Bohr
magneton) that tends to the maximum value 5 as U grows.
At the other electronic densities shown, there is always
phase competition between two or three states, and this
phase competition may preclude the order parameters from
reaching their maximum value, at least in the range studied.
The transitions between different magnetic states are of
first order but the jumps in the order parameters tend to
be rather small and in some cases the curves look almost
continuous.

C. Orbital composition

The orbital compositions of the seven states unveiled in
the phase diagram of Fig. 2 are given in Table II. From the
perspective of these occupations, the G-AFM state has clear
indications of being an insulator since all the five orbitals are
approximately equally populated with one electron per orbital.
On the other hand, most of the orbitals of the other six states
have a population substantially different from one, potentially
giving rise to a metallic state (perhaps with coexisting itinerant
and localized degrees of freedom). However, the Block-
AFM state should be insulating due to the peculiar spin
geometry of the state that renders difficult for electrons to
transition from block to block while keeping the same spin
orientation.

IV. DENSITY OF STATES

To investigate the metallic versus insulating characteristics
of the states in the phase diagram, the density of states have
been analyzed. Results are shown in Fig. 5. The situation for the
G-AFM state is clear: the state is an insulator with a robust gap.
The Block-AFM state involving spin blocks is also insulating,
as discussed above. This can be understood since in the Block
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TABLE II. Orbital compositions of the seven competing states
at selected couplings and densities. The details are as follows:
C state (U = 3.0, n = 6.0); Flux state (U = 3.0, n = 6.5); G state
(U = 3.0, n = 5.0); GC state (U = 3.0, n = 5.5); E state (U = 5.0,
n = 5.75); Block state (U = 5.0, n = 6.25); DC state (U = 5.0,
n = 6.75). Similarly as in Table I, the ∗ indicate phases where the
orbital population is not the same at each site. Typically, there are
four sites that repeat themselves in most of the cases, but sometimes
the periodicity involves two sites or eight sites. The numbers used for
these states in the present table are their average values.

xz yz x2-y2 xy z2 Total

C 1.0048 1.3911 1.3659 1.0099 1.2281 6.0
Flux∗ 1.3083 1.2435 1.4462 1.1108 1.3912 6.5
G 0.9998 0.9998 1.0029 0.9965 1.0009 5.0
GC 1.0017 1.1606 1.2269 1.0025 1.1083 5.5
E∗ 1.1249 1.1236 1.3758 1.0046 1.1212 5.75
Block 1.1509 1.1509 1.3244 1.0297 1.5940 6.25
DC 1.2183 1.3796 1.4397 1.0807 1.6317 6.75

state there are no paths from one extreme to the other of the
crystal with spins displaying the same spin orientation.

The C-AFM state is metallic, in agreement with previous
calculations [6], and the DC state is also metallic, at least at
the electronic densities and couplings used in the figure. This
is reasonable since C and DC only differ in the periodicity
along the y direction (strictly speaking, for the 8 × 8 cluster
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FIG. 5. (Color online) Density of states (DOS) at representative
values of couplings and densities, corresponding to the seven
magnetic states in the phase diagram of Fig. 2. (a) Flux state (U = 3.0,
n = 6.5); C state (U = 3.0, n = 6.0); GC state (U = 3.0, n = 5.5);
(b) E state (U = 5.0, n = 5.75); Block state (U = 5.0, n = 6.25);
DC state (U = 5.0, n = 6.75); (c) G state (U = 3.0, n = 5.0).

there is a tiny gap in the density of states (DOS) for the DC
state in Fig. 5 but this may be caused by finite-size effects).
The E phase also displays a small gap, but it is difficult to say
whether it will become insulating or metallic in the bulk limit.
Finally, the Flux state appears to be clearly metallic, while
the GC-AFM state is insulating. The latter has this property
because it is formed by isolated 2 × 1 spin blocks, qualitatively
similar to the characteristics that led to the insulating nature of
the Block-AFM state made of isolated 2 × 2 spin blocks.

In Fig. 2, the insulating regions have been indicated. As
expected, special electronic densities such as n = 5.0, 5.5, 6.0,
6.5, and 7.0 display an insulating state at values of U smaller
than for other intermediate densities. The insulating states are
shown in the region of parameters displayed in Fig. 2. The
metal versus insulator character of the state was decided based
on the density of states, and its weight at the Fermi level. In
most cases, before the actual metal-insulator transition there
is a region with a pseudogap on the metallic side, with low (or
very low) weight at the Fermi energy. For electronic densities
other than the five indicated above, eventually for sufficiently
large U (not shown in the figure) an insulating state (or a
pseudogap state with very small weight at the Fermi energy)
is found.

V. PHASE SEPARATION

The phase diagram shown in Fig. 2 contains regions of
phase separation (PS). The conclusion that there are unstable
regions with these characteristics in the phase diagram was
based on the study of the curvature of the E(n) versus n

curves, where E(n) is the ground-state energy at the electronic
density n. Phase separation in multiorbital systems occurs
in other contexts, such as in double exchange models for
manganites [19–22], thus it is not unexpected to find the same
phenomenon in the five-orbital Hubbard model as well. To
visualize the presence of regions with negative curvature in
the E(n) versus n curves it is better to introduce �E(n) =
E(n) − E0(n), where E0(n) is a straight line that joins the
energies at the boundary densities of the PS region. Therefore,
�E(n) should be positive if E(n) versus n has a negative
curvature. Some representative results are shown in Fig. 6,
where indeed it is clear that PS exist in the regimes of parameter
space corresponding to those curves.
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5.0 5.1 5.2 5.3 5.4 5.5

Δ E
 (
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<n>

U=3.0
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FIG. 6. (Color online) Plots of �E(n) vs. n showing the exis-
tence of negative curvature, namely phase separation. The results
were obtained for U = 4.0 and U = 3.0, J/U = 0.25, and in the
range of densities indicated. Here �E(n) = E(n) − E0(n), where
E(n) is the actual ground-state energy at electronic density n and
E0(n) is a straight line that joins the energies of the two densities at
the boundaries of the PS regions.
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The two regions in which the PS state separates are in
principle macroscopic in size. However, previous experience
with Mn oxides [21] suggest that once other interactions are
included, particularly the long-range portion of the electronic
Coulombic repulsion, the PS regions become unstable. This
macroscopic separation is replaced by complex states that are
mixtures, at the nanometer length scale, of the two phases at
the boundaries of the PS portions of the phase diagram. In
this regime, nonlinear responses to external fields could be
expected [21].

Note that phase separation was also observed in previous
studies of multi-orbital Hubbard models, employing related
momentum-space mean-field and Heisenberg mean-field tech-
niques and a different set of hopping amplitudes [15]. In
particular, the PS regions found in Ref. [15] also involved the
G and C states as in our results, although in our case the GC
state (not included in the study found in Ref. [15]) also plays an
important role. Although the agreement is not quantitative, the
similarities of both studies suggest that PS must be considered
when phase diagrams of multi-orbital Hubbard models are
constructed. As mentioned before, the presence of PS was
also reported in recent related calculations that employed a
mean-field approximation to a model with weakly coupled
electrons having an electron- and a hole-band with imperfect
nesting [24,25]. The qualitative agreement with these previous
results suggest once again that the PS tendency may be generic
and should be considered into future studies, and even in the
interpretation of some experiments.

To complete the comparison of our present results to
the existing literature, note that in Ref. [15] charge order
tendencies were observed in the DS state. With this previous
report as a motivation, exhaustive searches for charge-ordered
states were carried out here, in the density window from n =
5.5 to n = 6.5. Indeed charge modulations in a checkerboard
pattern were observed in some of our studies, particularly
when starting the runs using a charge-modulated initial
state as guidance. However, these states end up having a
higher energy than the other states reported in our study.
This should not be considered a critique of Ref. [15] since
their model and technique are not identical to ours, but
it provides further support to our main conclusion: there
are a variety of interesting states competing in the phase

diagram of multi-orbital Hubbard models, particularly at
intermediate/large U .

VI. CONCLUSION

The phase diagram of a five-orbital Hubbard model has
been presented in this publication, working at a fixed Hund
coupling J/U = 0.25, varying the Hubbard repulsion U and
the electronic density n in the range from 5 to 7, and employing
the real-space Hartree-Fock approximation as the many-body
technique. While our results cannot be considered quanti-
tatively accurate due to the intrinsic deficiencies of mean-
field approximations, qualitative trends appear reasonable and
moreover they are in good agreement with other independent
theoretical investigations. These trends include the presence
of many competing magnetic states (superconducting states
were not studied here), suggesting a rich free-energy landscape
with several local minima. Perhaps not surprisingly based on
previous studies on colossal magnetoresistive Mn oxides, this
rich landscape may lead to regions of phase separation where
complex states involving a nanometer-scale mixture of the
competing phases could be stabilized. In addition, there is a
clear tendency to evolve from fully antiferromagnetic states
at n = 5 to states with an increasing number of ferromagnetic
links as n grows.

Several of the states that spontaneously appeared in our
phase diagram are known to exist in experiments, either for
layered materials or in other geometries such as with regularly
spaced Fe vacancies or in two-leg ladders. These states are
the G-, E-, and C-type antiferromagnets, and also the 2 × 2
Block state. In addition, three novel states have been found in
our study: the GC, Flux, and DC states. Experimental efforts
should be devoted to the search for these states in actual
compounds. The similarity of our results with the conclusions
of other theoretical efforts give us confidence that the trends
studied here are robust and the characteristics of multi-orbital
Hubbard models in general, in the range of densities from five
to seven electrons per transition metal atom.
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APPENDIX

For completeness, the hopping amplitudes used in this study
are given in Table III.
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