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On-site attractive multiorbital Hamiltonian for d-wave superconductors
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We introduce a two-orbital Hamiltonian on a square lattice that contains on-site attractive interactions involving
the two e, orbitals. Via a canonical mean-field procedure similar to the one applied to the well-known negative-U
Hubbard model, it is shown that the model develops d-wave (B, ) superconductivity with nodes along the diagonal
directions of the square Brillouin zone. This result is also supported by exact diagonalization of the model in a
small cluster. The expectation is that this relatively simple attractive model could be used to address the properties
of multiorbital d-wave superconductors in the same manner that the negative-U Hubbard model is widely applied
to the study of the properties of s-wave single-orbital superconductors. In particular, we show that by splitting
the e, orbitals and working at three-quarters filling, such that the x> — y? orbital dominates at the Fermi level but
the 3z> — r? orbital contribution is nonzero, the d-wave pairing state found here phenomenologically reproduces
several properties of the superconducting state of the high 7, cuprates.
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I. INTRODUCTION

Simple model Hamiltonians that can capture the basic
aspects of the electronic collective states observed in com-
plex materials, such as in the cases of antiferromagnetism
or superconductivity, are crucial to advance the theoretical
understanding of these nontrivial phases and to interpret
and guide experimental efforts. The standard Hubbard and
t-J models have successfully allowed for the study of the
properties of antiferromagnetic compounds in the undoped
limit [1,2], while the negative-U Hubbard model is a useful
tool for the study of canonical s-wave superconductors, from
the BCS regime in weak coupling to the realm of Bose-Einstein
condensation in its strong coupling limit [3-5]. The discovery
of d-wave superconductivity in the high T, cuprates created the
need for an equivalent simple Hamiltonian to analyze d-wave
condensates [6,7]. While it is widely believed that upon doping
both the Hubbard and ¢-J models develop d-wave supercon-
ductivity, this regime is difficult to study because the signals
of superconductivity may be hidden by other more dominant
energy scales such as the superexchange J. In fact, numerically
the evidence for long-range order superconductivity in these
models is rather weak in realistic regimes of couplings. On
the contrary, for the negative U Hubbard model, even in small
systems such as 2 x 2 lattices, the s-wave pairing tendencies
are already clearly apparent [8,9].

For these reasons, several efforts have been devoted to
develop the analogous of the negative-U Hubbard model but
for d-wave superconductors [10—13]. The simplest approach
is based on the single orbital case, to keep the number of
degrees of freedom to a minimum. This rationale is based on
the fact that one single band, albeit composed of hybridized
oxygen p and copper d orbitals, does define the Fermi surface
of the high T, cuprates. However, in this case of a single
orbital system, a pairing operator with d-wave symmetry has
to locate the two electrons that form the Cooper pair in two
different lattice sites, as opposed to the negative-U s-wave
pairing operator that describes a rotationally invariant pair of
electrons with opposite spin on a single lattice site. While
an attractive on-site potential readily allows the formation
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of on-site Cooper pairs in the negative-U Hubbard model,
interactions that bond electrons in nearest neighbor sites, as
required for d-wave pairing, tend to induce the formation of
extended clusters of carriers that eventually leads to phase
separation rather than superconductivity, as argued in previous
work [10]. By fine tuning parameters, or including the effects
of long-range Coulomb repulsion, eventually pairing could
be stabilized, but these extra interactions lead to models
that are difficult to study. In addition, Hamiltonians where
short range attraction competes with long-range repulsion
could also form complex structures such as stripes that
may compete with pairing [14,15] or d-wave pairing may
arise from dynamical density fluctuations near a quantum
critical point [16]. While magnetism is considered a crucial
factor in the mechanism that generates d-wave pairing in the
cuprates [17-19], finding a simple effective model involving
only charge and spin degrees of freedom that readily displays
robust d-wave superconductivity remains elusive.

The discovery of high T, superconductivity in the iron-
based pnictides and selenides has provided a novel playground
to investigate the potentially crucial role played by having
many simultaneously active degrees of freedom involved in
the mechanism of superconductivity [20,21]. While there
are indications of either s- or d-wave symmetry in the
superconducting order parameter of representative members
of this family of compounds, it is clear that the orbital degree
of freedom must be included in the theoretical description. In
fact, at least three d orbitals contribute to determine the Fermi
surfaces. When these orbital degrees of freedom are included,
it is sometimes forgotten that they themselves contribute to
determine the symmetry of the order parameters. In fact, the
pairing operators for the pnictides are classified according to
both their spatial and orbital symmetry properties [22-25].

The key observation in this publication is that the addition
of the orbital degree of freedom allows for the possibility
of developing on-site pairing operators whose symmetry is
nontrivial, namely non-s-wave. More specifically, in this
publication we will explicitly show that an on-site pairing
operator with d-wave (B},) symmetry can be constructed for a
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two-orbital system with hybridized bands on a square lattice.
Moreover, we show that on-site interorbital pairing tendencies
can be generated via an on-site interorbital attraction and
an effectively antiferromagnetic “Hund coupling” term. The
strength of the attraction and effective Hund coupling is
tuned with a single parameter V which in turn determines
the strength of the superconducting order. We believe that
the weak coupling regime of this model will allow for the
study of the properties of generic d-wave superconductors
in the same manner that the BCS limit can be studied with
the negative U Hubbard model, while the strong coupling
limit will unveil a novel unexplored regime where a Bose
condensation of d-wave pairs dominates. In other words, all
the fruitful investigations carried out in the past for the negative
U Hubbard model can be now revisited employing a model
with robust d-wave pairing, without the complication of phase
separation, opening a broad avenue of research.

The paper is organized as follows: In Sec. Il the Hamiltonian
for the multiorbital d-wave model is presented. A mean-field
study of the Hamiltonian is performed in Sec. III. Section IV
is devoted to the exact diagonalization of the model in a small
cluster and the calculation of the d-wave and s-wave pairing
correlations. A final discussion of the main results is presented
in Sec. V.

II. THE MD MODEL

The tight-binding term of the multiorbital d-wave model
(dubbed the MD model) introduced here results from applying
the Slater-Koster [26] method to the x> — y* and 3z2 — r% d
orbitals using a square lattice. It is well known that these are
the two orbitals of relevance in the colossal magnetoresistive
manganites [27]. Also several authors have considered these
two same orbitals to model the cuprates. Despite the fact
that only one band of mostly x> — y? character determines
the Fermi surface, in practice this band is at least weakly
hybridized with the 37> — 2 orbital [28—32]. Using the Slater-
Koster formalism we obtain

Hip == Y (fowCyoCiroao +He)

i,D,a,0 0

_Mzni,a +3Zni,2, ()
i,a i

where c{aﬂ creates an electron at site i, orbital «, and with
spin projection o. The orbital label @ = 1 (2) indicates the
x% — y? (322 —r?) orbital. D is a unit vector that takes the
values X or §. The hoppings are given by #; | = 11, hhr» = b,
and ;5 = 7,13 where 73 = 1 and 7y = —1 (note that this last
sign difference is crucial to obtain the d-wave pairing). While
the actual amplitudes #; depend on the overlap of integrals,
it is customary to consider them as free parameters that
are chosen to reproduce the shape of the Fermi surface of
the system to be studied [33]. © is the chemical potential
and n;, is the number operator. The parameter § breaks the
energy degeneracy between the e, orbitals, as it occurs in
the cuprates. The tight-binding portion of the Hamiltonian
can be written in momentum space via the Fourier transform
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+ (k1 oo + He)], @)
with
Ty' = —2t1(cosk, + cosky) — i, (3)
T, = —2ty(cosk, + cosk,) + 8 — i, “4)
T,? = 2t3(cos k, — cosk,). 5

While indeed the hoppings #; could be adjusted to reproduce
the shape of a particular Fermi surface, to simplify the
calculations we adopt the values

31
n=". 6)
1
= ZO )
and
31
B =— J; 2 (8)

so that all the hoppings #; can be expressed in terms of one
single parameter f, (again, note that the hopping 73 also has a
sign difference between the x and y directions, crucial for d-
wave pairing). The tight-binding dispersion, with the energy in
units of 7, is shown in panel (a) of Fig. 1 for the nonhybridized
special case where 73 = 0. In this case, the band with the larger
(smaller) bandwidth has pure x> — y? (3z> — r?) character,
and it is indicated with a red (blue) line in the figure. The band
dispersion for the hybridized case (nonzero #3), that will be our
main focus with regards to the existence of d-wave pairing, is
shown in panel (b) of Fig. 1. The colors indicate the mixture
of the two orbitals in each of the bands. It can be observed that
this orbital mixing is the strongest along the I' — X direction
where a gap separates the bands that otherwise would cross
as shown in the nonhybridized case. On the other hand, along
the diagonal of the Brillouin zone, M — I', there is no gap
and the two bands still cross each other regardless of the value
of 3. The bandwidth is W = 61, as long as |§| < 37y. Note
that we have selected § = —fy and we have chosen a chemical
potential u, indicated by a dashed line in the figures, that fixes
the electronic density to three electrons per site, which means
that the lower band is filled and the upper band is half-filled
with an overall electronic density (n) = 1.5.Itis clear that one
band plays the dominant role to determine the Fermi surface
shape shown in panel (c) for the hybridized case. The colors
indicate that this Fermi surface is mostly of d,>_,> character,
as in the case of the real cuprates, and the orbital mixing is
maximized along the I' — X and I — Y directions while it is
zero along the diagonals.

The Hamiltonian must transform as the A, representation
of the Cy4, group of the square lattice. Then, since cos k, —
cos ky transforms like Bi, in Eq. (5), the product of operators

clT( | oCk,2,6 also has to transform like Bi,. In fact, Eq. (2) can
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FIG. 1. Band dispersion for the tight-binding term of the MD
model discussed here: (a) is the nonhybridized case (13 = 0) and
(b) the hybridized case (3 = —+/31y/8); the dashed line indicates
the chemical potential position that leads to (n) = 1.5; (c) Fermi
surface corresponding to the tight-binding Hamiltonian of panel (b).
In panels (a), (b), and (c) the colors indicate the orbital composition of
the bands, with the scale ranging from 0 (blue, denoting 3z — r?) to
1 (red, denoting x> — y?). Panel (d) contains the orbital composition
of the band that determines the Fermi surface of panel (c): The red
(blue) circles indicate the weight of the x> — y? (3z% — r?) orbital.

be rewritten as

Hp(k) =Y W &0, ©)
k,o

where lIJL, = (Cl,l,g:cl,z,o) and
Sk = €0y ~|— ]/kO'[ + 3k037 (10)

with o; the Pauli matrices and

€k = —(Tkn ; n) = —(t; + tr)(cos ky + cosky) + g — W,

Y
S = w = —(t; — th)(cosky + cosky) — g (12)
and

W = T, = 213(cos k, — cos k). (13)

The expressions above establish that the orbital matrix o)
transforms like By,, while g and o3 transform like Aj,.

The orbital composition of the band that determines the
Fermi surface is displayed in Fig. 1(d) as a function of the
angle ¢, which is 0 when kr is along the x axis and /2 when
it is along the y axis. The B, character of the hybridization
becomes clear since at ¢ = 7 /4 the band is not hybridized,
namely it consist of a pure x> — y? orbital. This means that a
pairing operator of the form

D _ i P
A§ = 1462, — ci|,1,¢ci,2,¢ (14)
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will transform as B, and, therefore, it is a d-wave pairing
operator.

The next step is to construct an interaction term to be added
to the Hamiltonian that would favor d-wave pairing. Based on
the symmetry considerations above, this term can be written
as

Hpyo=—V Z APIAD), 15)

1

by analogy with the attraction that leads to s-wave pairing
(U Yinini, = —U Y AVTAP with AP = ¢ 1 ¢i) in
the negative-U Hubbard model. Expanding Eq. (15) in terms
of the c{ a0 Operators, it can be shown that

\%
Hyp =2V Zsi,l -Sip — B Zni,lni,z, (16)
i i

where Siy =3, Auyo?Peins and nig =Y clao
Cia.o- Notice that these are precisely two of the terms
that are already present in the interaction portion of the
standard (repulsive) multiorbital Hubbard model, but now with
couplings of opposite signs (qualitatively similar as to how
the sign of U is reversed in the one-orbital Hubbard model
to induce s-wave pairing) [34]. Thus, an intuitive view of the
interaction term introduced here is that it promotes spin singlet
formation via an interorbital spin antiferromagnetic coupling
(i.e., the opposite of the canonical Hund’s rule coupling that is
ferromagnetic) as well as promoting pairing via an interorbital
electronic attraction, the latter being similar to the intraorbital
electronic attraction of the negative-U Hubbard model. The
total Hamiltonian for the multiorbital d-wave model is then

Hyip = Htg + Hin. a7

As in the case of the negative-U Hubbard model, the attractive
interactions that appear in Hj, should be understood as
effective interactions that mimic the net effect of the (often
complex) actual physical mechanism that causes the attraction
in the d-wave channel. This real pairing mechanism may
involve the spin, orbital, and/or lattice, and our model is an
effective-model representation of those physical processes.

III. MEAN FIELD STUDY

As in the case of the negative-U Hubbard model, a simple
mean-field approximation is here expected to capture the
essence of the ground state of the proposed d-wave model.
The interacting term Hj,, in momentum space is given by

Vv

2 : r T
Hint = _N oo Ck,],UC_k,zy_qc—k’,Z,a’ck’,l,—a“ (18)

kK 0,0’

Introducing the standard mean-field expectation values by =
(C—K,—, | CK a,1) and bl = (c;aﬁcikﬁaw) and performing the
substitution cl’a,Tcikﬁm L= bf( + (cLa!Tcikﬁa, L b:{) (and
an analogous substitution for the product of annihilation
operators), the mean-field results are obtained. As usual, the
fluctuations around the average given by (cl:w,TcT L bl)

—k,—«,
are assumed to be small. The resulting mean-field Hamiltonian
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is given by

Hyr =Y W HU+ > (T + T2) +2VAIN, (19)
k k

where the generalized Nambu spinor is Wy = (ck 1,1,
ck,M,c]L_k$1’¢,cT_k,2yi)T, while Hy is a 4x4 matrix given by

_ &k —V Ao,
= (—VAO’1 —& > 20

where we have defined A = (clt,a,ﬁctk,—a,ﬂ = {CKk,—a,)
ck/,ot,T>~

Similarly as for the case of magnetic order in the multior-
bital Hubbard model [35], here we found that a finite value
of the attractive coupling strength V is needed to stabilize a
nontrivial solution with a nonzero gap [36] (this is different
from the case of the negative-U Hubbard model where a
nontrivial solution occurs for any |U| > 0 at any density).
More specifically, we have found numerically that a nontrivial
solution appears for V > 1y, which is clearly still in the weak
coupling regime since the bandwidth is W = 6¢y. In panel
(a) of Fig. 2 the mean-field energy as a function of the gap
parameter A is presented parametric with V at the electronic
density (n) = 1.5. The particular value of A that provides the
minimum mean-field energy is indicated for each value of the
attraction. The reason why pairing does not become stabilized
with an infinitesimal attraction is due to the fact that if Eq. (20)
is written in the base in which & is diagonal, the 2x2 blocks

L T
43401 (2) =y
« | |—vVv=l5
o V=2
-4.345 — V=25

4350k

\ Ll _
0 0.02 0.0440.06 0.08 0.1

-0. lr X M T

FIG. 2. (a) Mean-field energy vs. the gap parameter A parametric
with the strength of the attraction V, at (n) = 1.5. The value of A
that minimizes the energy in each case is indicated with the dashed
lines; (b) Band structure along the directions I' — X — M — I" using
the mean-field approximation for the Hyp model for the cases V = 2
(thin orange lines) and V = 0 (black line), with the continuous lines
denoting the tight binding dispersion and the dashed lines the replicas
mean-field “shadow” bands. The ellipses indicate the gaps that open
below and above the FS due to the orbital mixing, the black rectangle
shows the gap at the FS, and the magenta rectangle shows the d-wave
node at the FS; (c) Detail corresponding to the black and magenta
rectangles in panel (b).
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B = —V Aoy become

B — <Vintra

Vimer )
, 21
Vinter

- Vintra

where Vingra = 2V Augvg is the effective intraband pairing,
Viner = V A(ulz( — vﬁ) is the effective interband pairing, and uy
and vy are the elements of the unitarian matrix U that perform
the change of base transformation and satisfy uj + v2=1 [37].
The intraband potentials have opposite signs in each band.
In addition, when |k,| = |k, | the matrix & is diagonal, since
the orbitals are not hybridized along this line, and ux = 1
while v = 0. In this case, the four eigenvalues of Eq. (20) are
given by

r=+T2 +/(12) + v2a, 22)

Since at the FS (see panel (d) of Fig. 1) uj — v is always
larger than 0 it is clear that Vi, never vanishes preventing
the existence of a pure intraband attraction that would allow
for the stabilization of a gap for any nonzero value of the
attraction V.

As in the case of multiorbital magnetism gaps in the band
structure appear not only at the Fermi surface (FS), but also
at lower energies inside the Fermi sea. The mean-field band
structure for the case of V = 2 is indicated by the red lines in
panel (b) of Fig. 2 while the continuous (dashed) black lines
denote the (“shadow”) band dispersion in the noninteracting
case. It can be observed that the interorbital attraction opens
a gap at the FS, as indicated by the black rectangle along the
I' — X direction and shown in detail in panel (c) of the figure.
However, a node remains along the diagonal direction M — T,
as highlighted by the magenta rectangle in panel (b) and
detailed in panel (c) of the figure. Strictly speaking, Eq. (22)
shows that at the node there is a small gap given by 2(7;2* —

V(T2)? + V2A2?) which is negligible for small values of V,

as in Fig. 2, but eventually the node will be removed in the
strong coupling limit [38].

The internal gaps that appear both above and below the FS
due to the interorbital interaction are indicated with ellipses.
Notice that the gap along the FS is modulated by a function

FIG. 3. The spectral function A(k,w) along the directions
I'-X—M—T in the mean-field approximation for the Hyp
model, working at V = 2. The inset highlights the weak intensity
“shadow” spectral weight below and above the gaps opened by the
attraction V.
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f(ky,ky) with nodes for |k.| = |k,|, which arises from the
matrix elements of the change of base matrix that transforms
the system from the orbital to the band representation [38].

We have also calculated the spectral function A(k,w) for
the case of V = 2. This mean-field spectral weight is shown
in Fig. 3. It can be observed that at the locations of the
gaps, namely at the FS but also below and above that FS,
the spectral weight is reduced and “shadow” spectral weight
appears across the gap. In other words, the single peak in the
spectral function now splits into two. Notice that the opening
of gaps located away from the FS is an effect caused by
the interorbital interaction, and it could explain the puzzling
result recently observed in some iron superconductors where a
superconducting gap appears in a band that is below the Fermi
surface [39].

IV. EXACT DIAGONALIZATION USING 2 x 2 CLUSTERS

It is well known that the tendencies towards s-wave pairing
are clear in the negative-U Hubbard model even already in
a rather small 2x2 cluster [9]. For this reason, we found
it useful to perform an exact diagonalization of the novel
MD model in this small cluster size (because the number
of degrees of freedom now includes the orbital, this is the
largest nontilted square cluster that can be fully diagonalized
exactly). Working in subspaces with a fixed number of particles
ranging from O to 16 we found the ground state energies and
studied their behavior varying the chemical potential u for
several values of the attraction V. In Fig. 4 the squares indicate
the zero-momentum Fourier transform of the d-wave pairing
correlation functions (A§D) Aﬁfﬁ) for the case N = 12, namely
(n) = 1.5 in the 2x2 cluster as a function of the attraction
V. For comparison, the circles indicate the results for the
s-wave pairing operator in the negative-U Hubbard model as

2.5 T

2 —

S il

s -

= |
wn

1 @@ Hubbard model - S(0) B

=1 MD Model - D(0) ]

05 MD Model - S(0) |
0 i \ \ \
0 10 20 30 40 50

U, v

FIG. 4. Exact diagonalization results using 2x2 clusters. Shown
is the Fourier transform at momentum zero, D(0), of the d-wave
pairing correlations for the MD model (with (n) = 1.5,1.e., N = 12)
vs the on-site attraction strength V (squares). The diamonds denote
S(0), the Fourier transform of the on-site s-wave pairing correlations.
For comparison, S(0) for the negative U Hubbard model is also shown
varying the strength of the attraction U (circles). The inset shows D(0)
for the MD model and S(0) for the negative-U Hubbard model in the
weak coupling regime.
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FIG. 5. Exact diagonalization results corresponding to a 2x2
cluster. Shown are the lowest energy levels for each possible value
of N as a function of the chemical potential for the MD model. The
inset allows us to see that the states with N = 14, 12, and 10 can be
stabilized as ground states by the chemical potential for V = 2.

a function of |U| given by the k = 0 Fourier transform of
(AP DAY + 1) with AP() = ¢] ] | In both models,
the pairing operators expectation values rapidly increase with
the attraction, but in the inset it can be noticed that in the
negative-U model the pairing monotonously increases with
|U| while in the MD model there is a jump at V = 0.7 with
a monotonous increase only afterwards. This behavior is in
qualitative agreement with the mean-field result indicating that
the superconducting state is stabilized only at a finite value
of V of order unity. For comparison the on-site intraorbital
s-wave pairing correlations for the MD model using the
pairing operator A{" =Y ¢f ch.a, , were also calculated
(see diamonds in the figure). Clearly, there is no pairing in the
s-wave channel, as expected.

Additional evidence of pairing in the MD model is obtained
by studying the behavior of the ground state energy varying
the chemical potential. In Fig. 5 the ground state energies for
the states with an even (odd) number of particles are indicated
with a straight (dashed) line. As in the negative-U Hubbard
model, only states with an even number of particles are stable,
indicating that the system displays pairing tendencies at all
densities. The inset shows in more detail that all states with an
even number of particles can be stabilized with an adequate
chemical potential tuning suggesting that the system does not
have phase separation [40], a problem previously observed in
proposed d-wave models involving nearest-neighbor attrac-
tion, as opposed to the on-site attractions used here. We have
also verified explicitly, by inspection of the wave functions,
that the relative symmetry between all the N-even ground
states is By [41], as expected.

V. DISCUSSION

In this publication, we have presented a two-orbital
Hamiltonian Hyp with on-site attraction that can generate
d-wave superconductivity due to the nontrivial symmetry of
the overlap integrals between hybridized orbitals that form the
bands at the Fermi surface. In particular, this minimum model
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for d-wave pairing contains two e, orbitals on a square lattice.
Via a canonical mean-field calculation, we have shown that
this model, with an attractive on-site interorbital interaction
and an effective antiferromagnetic Hund interaction, indeed
supports d-wave superconductivity if the orbitals x> — y? and
3z2 — r? are nondegenerate. In multiorbital materials, it is
possible that interorbital pairing occurs at the Fermi surface.
Moreover, it was shown that the interorbital attraction also
opens gaps away from the Fermi surface, a phenomenon
already experimentally observed, but not yet explained, in the
pnictides [39]. In addition, in analogy with the well known
negative-U Hubbard model, that despite the local attraction can
be used to study phenomenologically BCS superconductors
with extended pairs in real space, it is expected that this
new simple model could be applied to the phenomenological
study of the properties of d-wave superconductors because
the on-site character of the interactions in the MD model
readily stabilizes the d-wave superconducting state without
phase separation tendencies. This is to be contrasted with
more physically realistic, but far more challenging, models in
which d-wave pairing is expected to result from a fine tuning
of the competition between long-range Coulomb repulsion
and a short-range attraction induced by antiferromagnetism.
In this context complex extended structures, such as stripes
or inhomogeneous states, can be formed as observed both
in the cuprates and in the colossal magnetoresistive man-
ganites [14,27], and they tend to compete with uniform
superconductivity.

Similarly as the negative U one-orbital Hubbard model can
be deduced from the Holstein model with electron-phonon
interactions under appropriate approximations, it would be
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desirable to couple electrons in a multiorbital context to
bosonic degrees of freedom, representing either phonons or
magnons, and find out what effective electronic toy model is
obtained by “integrating out” the bosons. We conjecture that
the model proposed here may be at least part of that resulting
effective model.

It is important to remark that the symmetry of the pairing
order parameter in the MD model can be changed by modifying
the lattice geometry or the orbitals involved. For example, if the
dy; and d; orbitals are considered, still using a square lattice,
the symmetry of the on-site order parameter becomes By, i.€.,
with nodes along the x and y axes of the Brillouin zone [23,24].
Also note that while we have focused on electronic density
(n) = 1.5 in order to ensure a single band FS, the d-wave
state is stabilized for all other densities as is the case in
the negative-U Hubbard model. The addition of hoppings
beyond nearest-neighbor sites to the tight-binding portion of
the Hamiltonian can be used to fine-tune the shape of any
desired Fermi surface, as long as the hoppings are compatible
with the constraints imposed by the Slater-Koster analysis.
Finally, using different forms of the tight-binding portion of the
Hamiltonian to study the properties of d-wave superconductors
would allow us to establish which nontrivial properties of
d-wave superconductors are universal and which ones are
merely material dependent.
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