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Phonon linewidth due to electron-phonon interactions with strong forward scattering
in FeSe thin films on oxide substrates
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The discovery of an enhanced superconducting transition temperature Tc in monolayers of FeSe grown on
several oxide substrates has opened a different route to high-Tc superconductivity through interface engineering.
One proposal for the origin of the observed enhancement is an electron-phonon (e-ph) interaction across the
interface that is peaked at small momentum transfers. In this paper, we examine the implications of such a
coupling on the phononic properties of the system. We show that a strong forward scattering leads to a sizable
broadening of phonon line shape, which may result in charge instabilities at long wavelengths. However, we
further find that the inclusion of Coulombic screening significantly reduces the phonon broadening. Our results
show that one might not expect anomalously broad phonon linewidths in the FeSe interface systems, despite the
fact that the e-ph interaction has a strong peak in the forward-scattering (small q) direction.
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I. INTRODUCTION

Due to its structural simplicity, FeSe has played a leading
role in many experimental and theoretical studies on Fe-based
superconductors since its discovery in 2008 [1]. The enduring
interest in this compound is partially owed to the high Tc

(ranging between 55 and 100 K) achieved when monolayer
FeSe films are grown on SrTiO3 substrates [2,3] (FeSe/STO),
a tenfold enhancement from the Tc ∼ 8 K of bulk FeSe crystals
at ambient pressure [1]. Intriguingly, the high Tc in the inter-
facial system proves to be robust for various oxide substrates,
including SrTiO3 (001) [2,4], BaTiO3 (001) [5], SrTiO3 (110)
[6–8], anatase TiO2 (001) [9], and rutile TiO2 (100) [10].
These oxide substrates, terminated at the TiO2 surface when
interfaced with FeSe, have lattice parameters significantly
larger than that of bulk FeSe and thus apply strong tensile
strain on FeSe thin films. The anatase and rutile TiO2 substrates
even induce rather different strains along a and b axes of
the monolayer FeSe. The Tc’s, however, are consistently
above 55 K, as measured by angle-resolved photoemission
spectroscopy (ARPES). This observation appears to rule out
a direct correlation between the enhanced superconductivity
and the tensile strain [5,10].

The electronic structure of the interfaces displaying
enhanced Tc’s are also remarkably similar across the various
substrates. For instance, the Fermi surface measured by
ARPES consists of only electron pockets at the corners of
the two-Fe Brillouin zone, indicating substantial electron
doping from the parent compound. This observation poses
a challenge to theories for the high Tc based on the pairing
mediated by spin fluctuations that are strongly enhanced
by Fermi-surface nesting. One potential solution to this
problem is the involvement of bands below the Fermi
level in pairing (so-called incipient band pairing) [11–14].
Another possibility is the involvement of a different type
of pairing mediator such as nematic fluctuations [15] or
phonons particular to the interface [2,4,16]. Evidence for
the latter has been provided by the common observation of
replica bands in the electronic structure of superconducting

FeSe monolayers on SrTiO3 [4,8], BaTiO3 [5], and rutile
TiO2 [10].

The replica bands observed by ARPES are exact copies
of the original bands crossing the Fermi level in momentum
space but with a weaker spectral weight. They are interpreted
as being generated by an electron-phonon (e-ph) interaction
between the FeSe electrons and oxygen phonons in the
substrate [4,17,18]. This view is supported by the fact that
the ∼100 meV energy offset between the primary and the
replica band coincides with the phonon energy of oxygen
modes in SrTiO3 [19], BaTiO3 [20], and TiO2 [10]. Due
to the particular properties of the interface [17,21,22], this
interaction is strongly peaked for forward scattering (i.e.,
peaked at small momentum |q| transfer), as found by analyzing
the electrostatic potential from the dipole induced by the
oxygen modes [4,17,21] and by first-principles calculations
[19,20,22]. This unique momentum structure accounts for the
fact that the replicas sharply trace the dispersion of the primary
band, which requires that the e-ph interactions are forward
focused. Such a coupling can also significantly enhance Tc , due
to the linear dependence of Tc on the dimensionless coupling
constant λm [18,21], as opposed to the exponential dependence
obtained for the usual BCS case. For example, assuming a
narrow width q0 for the forward-scattering peak, some of the
current authors found λm ∼ 0.15–0.2 reproduces the measured
spectral weight ratio between the replica band and the primary
band and at the same time a Tc ∼ 60–70 K [18]. Reference
[23] has obtained similar results after extending this approach
to a more realistic band structure.

Many aspects of the influence of the e-ph interactions
with strong forward scattering on electronic properties and
superconductivity are summarized in Refs. [18,21,24]. In
comparison, there are no qualitative or quantitative studies
of the phononic properties for the problem at hand. Here, we
have carried out such a study to address two issues. First,
Zhang et al. [25] recently measured the phonon linewidth of a
∼90 meV phonon mode penetrating from the SrTiO3 substrate
into thin FeSe films using high-resolution electron-energy-loss
spectroscopy (HREELS) and concluded a mode-specific e-ph
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coupling constant λ ∼ 0.25. Not only does this echo the
discovery of replica bands by the ARPES experiments in the
same system, but it also calls for a theoretical consideration
on the HREELS measurements. Doing so would corroborate
both the total coupling strength and momentum dependence
of the e-ph coupling in FeSe/STO system with those inferred
from the ARPES measurements. Second, when a strong e-ph
coupling is distributed over a subset of wave vectors, one
expects tendencies towards charge-density-wave formation
that can compete with superconductivity. Such tendencies
will manifest themselves as Kohn anomalies in the phonon
dispersion and broad phonon linewidths. One can, therefore,
address this issue directly by examining the phononic self-
energy.

Here, we examine the phonon linewidth due to e-ph
interactions with strong forward scattering using the same
model adopted in Ref. [18] to study the electronic spectral
function. We first describe the details of the model and
method in Sec. II. Next, in Sec. III we give some analytical
results for the normal state phonon properties in the perfect
forward-scattering limit, where the interaction is treated as
a δ function at q = 0. This limit allows us to derive some
analytical results that can guide our thinking. Our numerical
results for both the normal and superconducting states with
finite q0 are given in Sec. IV. Here, our results show that
the forward focused peak in the e-ph coupling results in very
broad phonon line shapes. However, in Sec. V we reintroduce
Coulomb screening, which subsequently undresses the phonon
propagator and suppresses these effects. Finally, in Sec. VI we
summarize our results and make some concluding remarks in
relation to the HREELS experiment of Zhang et al. [25], as
well as the replica bands and the superconductivity.

II. MODEL AND METHOD

Our model Hamiltonian describes a single band model of
FeSe electrons coupled to an optical phonon branch via a
momentum-dependent coupling, which reads

H =
∑
k,σ

ξkc
†
k,σ ck,σ +

∑
q

ωq

(
b†qbq + 1

2

)

+ 1√
N

∑
k,q,σ

g(k,q)c†k+q,σ ck,σ (b†−q + bq). (1)

Here, c
†
k,σ (ck,σ ) creates (annihilates) an electron with wave

vector k and spin σ, b
†
q (bq) creates (annihilates) a phonon

with wave vector q; ξk is the electronic band dispersion
measured relative to the chemical potential μ; ωq is the phonon
dispersion (h̄ = 1); and g(k,q) is the momentum dependent
e-ph coupling.

We take a simple electronic band dispersion ξk =
−2t[cos(kxa) + cos(kya)] − μ, where a is the in-plane lattice
constant. We set t = 0.075 eV and μ = −0.235 eV, which
produces around the � point an electronlike Fermi pocket
with kF = 0.97/a, a Fermi velocity vF = 0.12 eV a/h̄ along
the ky = 0 line, and an effective electron band mass m∗

x,y =
( ∂2ξk

h̄2∂k2
x,y

)
−1

k=0
= h̄2

2ta2 = 3.3me, which is similar to the electron

pocket at the M point in FeSe/STO seen in ARPES experi-

ments [4,26,27]. Since we have a single band model, it only
takes a trivial Q = (π/a,π/a) shift to map our �-point pocket
onto the electron pocket in the real system centered at the
M point, and any physical quantities depending only on the
momentum transfer q = k − k′, such as phonon linewidth,
do not depend on the position of the pocket. Since we
are not considering the effects of an unconventional pairing
mechanism here, we do not need to consider the possibility
of d-wave instabilities due to scattering between the electron
pockets. As such, a single band model is sufficient for our
purpose.

Throughout we approximate the experimental phonon
dispersion with a dispersionless Einstein mode ωq ≈ ωph =
100 meV according to the observed energy separation between
the replica band and the primary band [4,10], as well as the
phonon dispersion of the interface, as measured by HREELS
[25]. We neglect the fermion momentum dependence in the
coupling g(k,q) = g(q), where q is the momentum transfer
and adopt g(q) = g0

√
8π/(aq0)2 exp(−|q|/q0) as derived

from a simple microscopic model [4,17,21]. Here, g0 is
adjusted to fix the total dimensionless coupling strength of
the interaction and q0 sets the range of the interaction in
momentum space. The normalization factor

√
8π/(aq0)2 is

chosen such that 〈g2(q)〉q ≈ g2
0 for q0 	 2π , where 〈Fq〉q =

a2
∫∫

BZ Fqdqxdqy/(2π )2 denotes an momentum integral over
the first Brillouin zone. We will typically set the in-plane lattice
constant a = 1 below; however, we will occasionally write it
out for clarity.

In this model, the values of ωq and g(q) used in the
calculation include all the screening effects within the oxide
substrate, but none from the FeSe film. Thus, we refer to
them as the “bare” or “unscreened” quantities. In Sec. V,
we show that using the unscreened phonon propagator and
the unscreened coupling g(q) overestimates the phonon self-
energy, especially the imaginary part (phonon linewidth) at
q = 0, by overlooking the strong screening effect of the FeSe
film at small momentum transfers. We also argue that it is
justified to approximate the electron self-energy 
(k,iωn) by
using the unscreened quantities in the calculation of 
(k,iωn).
Such an approximation is useful if one does not carry out a
self-consistent calculation. The difference between the fully
screened phonon frequency ωph (by both the substrate and the
FeSe film) and partially screened ωq (only by the substrate
itself) is small, however, so we do not distinguish them
(ωq ≈ ωph) in Secs. II–IV. Our calculation in Sec. V shows
that the difference is within 10% for most parameters. The
experimental measurements in Ref. [25] on phonon frequency
in SrTiO3 with and without FeSe deposited also support this
conclusion.

The electron and phonon self-energies due to e-ph inter-
action are calculated using Migdal-Eliashberg theory, where
the vertex part �(iωn,k; iων,q) is approximated with the
zeroth-order vertex function g(q). Here, ωn (ων) is the
fermionic (bosonic) Matsubara frequency. The relevant dia-
grams are shown in Fig. 1. As discussed in Ref. [24], in the
forward-scattering limit the vertex corrections are of order
λm, and can thus be neglected in the weak-coupling regime
λm ∼ 0.15–0.25 considered here. (λm measures the Fermi
surface average of the mass enhancement due to the e-ph
interaction; see Ref. [18].) Note that the vertex correction is
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FIG. 1. The Feynman diagram for the electron self-energy (a) and
the phonon self-energy (b). The extra external legs (gray lines) are
not part of self-energy but are attached for clarity. The lines (double
lines) with an arrow in the middle represent bare (dressed) electron
propagators; the wiggly lines (double-wiggly lines) represent bare
(dressed) phonon propagators. The gray triangle represents the vertex
part. (c) The screened electron-phonon vertex, approximated by a
series involving Coulomb interactions (dashed lines) and neglecting
vertex corrections from the crossing diagrams.

independent of the adiabatic parameter ωph/EF, in contrast
to the standard Migdal’s approximation for |ων |/|q| 	 vF.
(The vertex correction is always proportional to λm for either
|ων |/|q| 	 vF or |ων |/|q| � vF [24], so our argument also
applies for the forward-focused e-ph interaction.) There are
alternative treatments that do not make use of Migdal’s approx-
imation [28–30] in the nonadiabatic regime for momentum
independent interaction g(k,q) = g0. These approaches are
beyond the scope of this work, which instead focuses on a
momentum dependent interaction. Furthermore, we calculate
the dressed electron Green’s function (electron propagator)
from the self-energy using the bare phonon Green’s function
(phonon propagator) [see Fig. 1(a)] and then insert this into the
bubble diagram for the phonon self-energy [see Fig. 1(b)]. This
approach is the so-called “unrenormalized Migdal-Eliashberg”
scheme [31], where the phonon self-energy is not fed back into
the electron self-energy self-consistently. As we will show
in Sec. V, this treatment is justified when one includes the
Coulomb screening of the e-ph interaction in the problem. At
the same time, we also use the bare coupling vertex g(q) rather
than the screened quantity to calculate the electron self-energy.
This is a reasonable approximation since, on the imaginary
axis and for strong forward scattering, the screened e-ph vertex
[defined in Fig. 1(c)] ḡ(q,iων) ≈ g(q) for ων 
= 0 and |q| → 0
[32]. We emphasize that since the electron self-energy diagram
is the same as that in Ref. [18], the enhancement of Tc and
the replica band feature should remain largely unaffected,
although Tc is slightly overestimated by using unscreened
coupling vertex g(q) for all Matsubara frequencies including
ων = 0 in the q and ων sum for the electron self-energy. Note
that in the phonon self-energy, the actual screened coupling
vertex ḡ(q,iων) must be used since there is no sum over q and
ων appearing in the phonon self-energy expression.

Adopting Nambu’s two-spinor scheme, the
electron self-energy 
̂(k,iωn) = iωn[1 − Z(k,iωn)]τ̂0 +
χ (k,iωn)τ̂3 + φ(k,iωn)τ̂1 and the dressed electron Green’s
function Ĝ−1(k,iωn) = iωnτ̂0 − ξkτ̂3 − 
̂(k,iωn) are
matrices in Nambu space with τ̂i being the Pauli matrices;
ωn = (2n + 1)π/β are fermionic Matsubara frequencies

with β = 1/T the inverse temperature (kB = 1); Z(k,iωn)
and χ (k,iωn) renormalize the single-particle mass and band
dispersion, respectively; and φ(k,iωn) is the anomalous
self-energy. The electron self-energy is self-consistently
calculated from the one-loop diagram in Fig. 1(a) as follows:


̂(k,iωn) = − 1

Nβ

∑
q,ν

[|g(q)|2D0(q,iων)

× τ̂3Ĝ(k − q,iωn − iων)τ̂3], (2)

where D0(q,iων) = − 2ωq

ω2
q+ω2

ν
is the “bare” phonon propagator.

Once we obtain the electron Green’s function self-
consistently, the polarization bubble in Fig. 1(b) is given by

P (q,iων) = 1

Nβ

∑
k,n

Tr[τ̂3Ĝ(k,iωn)τ̂3

× Ĝ(k − q,iωn − iων)], (3)

and �(q,iων) = |g(q)|2P (q,iων) is the phonon self-energy
and γ (q,ω) = − Im �(q,iων → ω + iη) is the phonon
linewidth, which has been analytically continued to the real
frequency axis. To perform the analytic continuation we use
the spectral representation of the dressed Green’s function,

Im �(q,ω) = − |g(q)|2π
∫ ∞

−∞
dω′

{
[nF(ω′ − ω) − nF(ω′)]

× 1

N

∑
k

Tr[τ̂3Â(k,ω′ − ω)τ̂3Â(k + q,ω′)]
}
,

(4)

where nF(x) = 1/(eβx + 1) is the Fermi-Dirac distribution
function and

Â(k,ω) = − 1

π
Im Ĝ(k,ω + iη). (5)

Ĝ(k,ω + iη) is obtained by the same iterative analytic contin-
uation method [33] we used in Ref. [18].

Finally, we find the dressed phonon propagator using

D(q,ω) = 2ωph

ω2 − ω2
ph + 2iγ (q,ω)ωph

, (6)

and phonon spectral function

B(q,ω) = − 1

π
Im D(q,ω). (7)

In the numerical calculations, we solve the electron self-
energy self-consistently on a 256 × 256 k grid. The con-
vergence for the self-energy is reached if the difference of
the self-energies from two consecutive iterations is less than
10−3 meV. The small imaginary part included in the iterative
analytic continuation is η = 3 meV.

III. ANALYTICAL RESULTS FOR THE PERFECT
FORWARD-SCATTERING CASE

We begin by examining the perfect forward-scattering limit,
where several analytical results can be obtained. Here, we
consider only the normal state in the low-temperature limit
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(Tc < T 	 |ξk|), because many qualitative features of the
phonon linewidth are already manifested there.

For a normal metal with a parabolic band ξk = k2

2m
− EF,

i.e., electron gas in three dimensions, the analytical result
of Eq. (3) is the Lindhard function [34]. The correspond-
ing result for electron gas in two dimensions is given in
Refs. [35,36]. Without the e-ph interaction, we can apply the
two-dimensional (2D) electron-gas result to our single band
model, due to the small size of the Fermi pocket from the band
dispersion ξk = −2t[cos(kxa) + cos(kya)] − μ ≈ k2

2m∗ − EF,

where k = |k| =
√

k2
x + k2

y,m
∗ = 1

2t
, EF = k2

F
2m∗ , and kF =√

4 + μ

t
. This approximate band dispersion is exact at the

band bottom and suitable for small k. With this approximation,
the imaginary part of the electron polarization without e-ph
interaction is

Im P0(q,ω) = − NF

q̃
[�(1 − ν2

−)
√

1 − ν2−

− �(1 − ν2
+)

√
1 − ν2+], (8)

where q̃ = |q|/kF, ν± = ω/(2EFq̃) ± q̃/2, NF = m∗/π is
density of states of two spins, and the step function �(x) = 1
for x > 0 and �(x) = 0 for x < 0.

With the inclusion of the e-ph interaction, the self-energy
in Eq. (2) is nonzero but diagonal in the normal state. In
the perfect forward-scattering limit |g(q)|2 = g2

0(Nδq,0) =
λmω2

ph(Nδq,0), where λm ≡ 〈|g(q)|2〉q/ω
2
ph = g2

0/ω
2
ph. The

(1,1) element of the self-energy is then given by [18]


(k,iωn) = aω2
ph

iωn − ξk − bωph − ω2
ph(1−b2)

iωn−ξk+bωph

, (9)

where a = λm/ tanh βωph

2 and b = tanh βωph

2 tanh βξk
2 . Using

this self-energy and Dyson’s equation, we find that at low
temperatures (T 	 |ξk| and T 	 ωph), the dressed Green’s
function acquires a two-pole form,

G(k,iωn) = AM

iωn − ξM
k

+ AR

iωn − ξR
k

, (10)

where AM,R = (
√

1 + 4λm ± 1)/(2
√

1 + 4λm) and ξ
M,R
k =

ξk + 1
2 sgn(ξk)ωph(1 ∓ √

1 + 4λm). Here, “M” and “R” denote
the main and replica band, respectively. To simplify the
calculation, we shift the two bands by the same energy
− 1

2 sgn(ξk)ωph(1 − √
1 + 4λm) (which is small if λm 	 1),

and the dressed Green’s function becomes

G(k,iωn) = AM

iωn − ξk
+ AR

iωn − ξR
k

, (11)

where the shifted ξR
k = ξk + sgn(ξk)�ω and �ω =

ωph
√

1 + 4λm. Here, AM + AR = 1. Physically, Eq. (11)
clearly indicates that the replica band exactly follows the
dispersion of the main band, and its energy offset from the
main band is +�ω (−�ω) for the part of the main band above
(below) the Fermi level.

Using Eq. (11), the imaginary part of the electron polariza-
tion with the e-ph interaction in the perfect forward-scattering
limit can be expressed in terms of the noninteracting electron
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FIG. 2. Normalized imaginary part of the electron polarization
− Im P (q,ω)/NF without e-ph interaction (a) and with forward-
scattering e-ph interaction (b). λm = 0.16 is used in panel (b). The
parabolic band approximation for FeSe/STO model ξk ≈ k2

2m∗ − EF

is assumed, so P (q = |q|,ω) is isotropic in momentum space.
kF ≈ 1/a, vF ≈ 0.1 eV a/h̄, EF ≈ 0.05 eV, and ωph = 0.1 eV.

polarization as follows:

Im P (q,ω)

= A2
M Im P0(q,ω)

+ 2AMAR Im P0[q,ω − sgn(ω)�ω]�(|ω| − �ω)

+A2
R Im P0[q,ω − sgn(ω)2�ω]�(|ω| − 2�ω). (12)

Here, sgn(ω) is the sign of ω. Equation (12) is also a good ap-
proximation when the coupling function g(q) ∝ exp (−|q|/q0)
has a sharp peak (q0 	 π/a). Then, the phonon linewidth is
given by γ (q,ω) = −|g(q)|2 Im P (q,ω).

In Fig. 2 we show − Im P (q,ω) calculated from Eq. (8) and
from Eq. (12) in panel (a) and (b), respectively. Figure 2(a)
manifests the electron-hole continuum for 2D electron gas at
low temperature, while Fig. 2(b) shows multiple-scattering
processes at low temperature corresponding to the three terms
in Eq. (12): one within the main band for |ω| > 0 that
represents the original electron-hole continuum, one between
the main and replica band for |ω| > �ω = ωph

√
1 + 4λm, and

one within the replica band for |ω| > 2�ω, in a descending
order of weights (A2

M, 2AMAR, and A2
R). As shown in Fig. 2(b),

at the fixed frequency ω = ωph, the magnitude of the imaginary
part of the electron polarization has a sharp upturn at a
finite momentum, leading to a peak that slowly decreases
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FIG. 3. (a) Momentum and temperature dependence of the
imaginary part of the electron polarization − Im P (q,ω) for a fixed
frequency ω = ωph and various momentum width parameters q0 =
0.1, 0.5, 1, and 2 in the e-ph coupling function g(q) ∝ exp(−|q|/q0).
The double Fermi-surface averaged coupling constant (defined in the
text) is fixed at λ = 0.8. The colors (gray scales) of lines represent
low (blue) to high (red) temperatures. (b) Similar to (a) but for phonon
linewidth γ (q,ω) = − Im �(q,ω) = −|g(q)|2 Im P (q,ω).

at larger momentum. This qualitative feature persists in the
full numerical result in the next section. Note that since the
coupling constant is a δ function, the phonon linewidth γ (q,ω)
is zero at all q values despite the fact that the polarization
P (q,ω) is nonzero.

IV. NUMERICAL RESULTS

We now turn to the polarization and phonon linewidth for
the case of an e-ph interaction with a small but nonzero width
in momentum space. Figure 3 shows the imaginary part of the
electron polarization − Im P (q,ω) and the phonon linewidth
γq = − Im �(q,ωph) for various temperatures. Here, we have
parametrized the total e-ph coupling using the double Fermi-
surface averaged definition

λ = 2

ωphN̄FN2

∑
k,k′

|g(k − k′)|2δ(ξk)δ(ξk′), (13)

where N̄F is the density of states per spin and
N−2 ∑

k,k′ δ(ξk)δ(ξk′) = N̄2
F . We have used this definition

because the q-averaged λm = 〈|g(q)|2〉q/ω
2
ph = g2

0/ω
2
ph equals

the mass enhancement factor − Re ∂
(ω)
∂ω

|
ω=0

only in the
limit of perfect forward scattering, while λ approximates the
mass enhancement factor when the e-ph interaction is more
uniform. The latter case occurs for the larger values of q0

used in Fig. 3. In addition, λ as defined in Eq. (13) does not
depend on temperature whereas λm does. Empirically, we find
λm ∝ (q0a)λ (see Ref. [24] for the proportionality constant),
which can be used to approximately convert between the two
definitions. In Fig. 3 we have set λ = 0.8, which is equivalent
to λm = 0.16 for q0 = 0.1/a and within the suitable range of
values that simultaneously fit both the high Tc value and the
measured spectral weight of the replica bands [18].

At low temperature and ω = ωph, the imaginary part of
the polarization in Fig. 3(a) has a peak appearing at |q| =√

2m∗ωph, which is a feature of the electron-hole continuum;
with increasing temperature, the − Im P (q = 0,ωph) increases,
and the rate of increase is faster for smaller values of q0. The
phonon linewidth, shown in Fig. 3(b), strongly peaks at q =
0 for q0 = 0.1 because the forward-scattering coupling g(q)
strongly suppresses the peak in the polarizability appearing at
the finite |q|. As the value of q0 increases, however, the width
of g(q) begins to overlap with the peak in the polarization, and
a corresponding peak in the linewidth recovers at nonzero q. In
this case, both the temperature and the width of the coupling
function g(q) dictate the full q dependence of the phonon
linewidth. Thus, due to its sensitivity to these parameters, the
momentum dependence of the phonon linewidth can be used to
determine not only the overall strength of the e-ph interaction
but also the width of the coupling function.

To reproduce the replica bands observed in the ARPES
experiments, the width of the e-ph coupling must be narrow
in momentum space with q0 ≈ 0.1/a–0.5/a. Based on this
observation, and the results shown in Fig. 3, one might expect
that the phonon linewidth in the vicinity of q = 0 should be
very large. In turn, the real part of the phonon self-energy will
also develop significant Kohn anomaly, leading to an instability
of the lattice. It turns out that the Coulomb interaction will
prevent this from occurring, as the divergence in the Coulomb
interaction at q = 0 effectively blocks the long-wavelength
instability. We will discuss this issue in the next section.

V. UNDRESSING OF THE PHONON LINEWIDTH
DUE TO COULOMBIC SCREENING

In this section we examine the effects of Coulomb screening
by the FeSe electrons on the e-ph vertex and the phonon
linewidth. Figure 1(c) shows the diagrammatic expansion
of the screened e-ph vertex evaluated at the level of the
random-phase approximation. The screened vertex is

ḡ(q,iων) = g(q) + g(q)[−VC(q)χ0(q,iων)]

+ g(q)[−VC(q)χ0(q,iων)]2 + · · ·

= g(q)

1 + VC(q)χ0(q,iων)
, (14)

where χ0(q,iων) = −P (q,iων) is the charge susceptibility and
VC(q) is the Fourier transform of the Coulomb potential. In
the continuum limit, VC(q) = 4πe2

|q|2 in three dimensions and

VC(q) = 2πe2

|q| in two dimensions. The corresponding phonon
self-energy is obtained by replacing the vertex function with

054515-5



WANG, RADEMAKER, DAGOTTO, AND JOHNSTON PHYSICAL REVIEW B 96, 054515 (2017)

the screened vertex with

�(q,iων) = g(q)[ḡ(q,iων)]∗[−χ0(q,iων)]

= −|g(q)|2χ0(q,iων)

1 + VC(q)χ0(q,iων)
, (15)

where we have assumed VC(q)χ0(q,iων) is real.
Here, we are interested in the case of an FeSe monolayer

located a distance h above the oxide substrate. We place the
FeSe electrons at z = 0 and the ions in the termination layer
of the substrate at z = −h. For this geometry, we introduce an
anisotropic Coulomb potential [37],

VC(q,qz) = 4πe2

εaq2 + εcq2
z

, (16)

where q =
√

q2
x + q2

y is the momentum transfer in a plane
parallel to the FeSe monolayer, and εa and εc are the zero-
frequency dielectric constants parallel and perpendicular to the
plane. By inverse Fourier transform, the real-space formula is

VC(x,y,z) = e2

√
εaεc

1√
r2 + z̄2

, (17)

where r2 = x2 + y2 and z̄ = (εa/εc)z2. After performing the
2D Fourier transform for the in-plane coordinates we arrive at

VC(q,z) = 2πe2

√
εaεc

e−q|z̄|

q
. (18)

To compute the screened e-ph interaction, we must use the
interaction at z = 0 for the Coulomb potential since the
particle-hole pairs are created in the FeSe layer. Putting this
all together, the phonon linewidth is given by

γ (q,ω) = ωq

ωph
Im

|g(q)|2χ0(q,ω)

1 + VC(q,z = 0)χ0(q,ω)/a2
, (19)

where we define the “unscreened” phonon energy as ωq =√
ω2

ph + [Re �(q,ω)]2 − Re �(q,ω).
We evaluated Eq. (19) for several values of q0 and λ, and

the results are shown in Fig. 4. Since the exact values of
the dielectric constants are not known for the FeSe interface
systems, we show results for εa = εc = 1 in Fig. 4(a) and
εa = 25, εc = 1 in Fig. 4(b). Note that the latter values are
close to the estimates obtained by Kulić and Dolgov (Ref. [21])
in the limit of perfect forward scattering. In both cases, we
find that the phonon linewidth is dramatically suppressed once
Coulomb screening is included; however, as the values of εa

and εc are increased, the magnitude of the linewidth increases.
These results indicate that the long-range Coulomb interaction
can prevent the formation of a competing charge ordering
at long wavelengths, which is consistent with the notion
that extended Coulomb interactions can suppress insulating
behavior [38]. Our results also show that this effect will
be somewhat sensitive to the dielectric properties of the
interface, which may offer a means to tune these properties.
Finally, the undressing of the phonon linewidth observed
here also provides a rationale for adopting an unrenormalized
Migdal-Eliashberg scheme, where the phonon self-energy is
not fed back into the electron self-energy in a self-consistent
manner. In this case, the calculated phonon self-energy is

0
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FIG. 4. The phonon linewidth γ (q,ω = ωph) along a high-
symmetry path M-�-X-M at T = 30 K. Results are shown for (a)
εa = 1 = εc and (b) εa = 25, εc = 1. The line color (gray scale)
encodes the different values of λ = 0.2, 0.4, 0.6, and 0.8, as indicated
by the color bar.

small, justifying the use of the bare phonon propagator in
the electron self-energy diagrams.

Comparing our results to the recent RHEELS measure-
ments by Zhang et al. [25], we find that once the Coulomb
screening is included, the computed linewidths are much
smaller than those inferred experimentally. Moreover, in the
experimental data, the linewidth is finite at the � point and
maximal around the X point. Our calculated linewidth is
exactly zero at the � point because the screening from the
Coulomb potential diverges at q = 0. However, we have
not considered any impurity potential in our calculation, or
other sources of broadening in the electron Green’s function,
and, subsequently, the phonon linewidth once the charge
susceptibility χ0 is computed. Regardless, the X point is not
the maximal point for the linewidth in any of our calculation
results. This discrepancy could also be due to the limitation of
our single band model. The real system is multiband in nature
and also shows strong magnetic fluctuations.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have calculated the phonon linewidth,
i.e., the imaginary part of the phonon self-energy in an
unrenormalized Migdal-Eliashberg scheme in the weak to
intermediate coupling regime for strong forward-scattering
e-ph interaction. Such an e-ph interaction dresses the elec-
tron propagator by simply creating the replica bands and
shuffles the electron-hole continuum of 2D electron gas into
three similar parts with descending weights beginning at
|ω| > 0, |ω| > �ω, and |ω| > 2�ω. If we do not include
Coulomb screening, the phonon linewidth is a simple product
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of coupling function |g(q)|2 with a forward-scattering peak
around q = 0 and the electron polarization with a very
similar momentum structure of the electron-hole continuum
of the 2D electron gas. Depending on the peak width q0 of
the e-ph coupling constant g(q) and the peak of electron
polarization at |q| = √

2m∗ωph, we find the linewidth γ (q,ωph)
has a maximum value at q = 0 or |q| ≈ √

2m∗ωph at low
temperature, and the linewidth is broad at q = 0. Even if
the latter happens, since the linewidth for small |q| tends to
increase with temperature, the maximum may shift back to
q = 0 at high temperature. The momentum resolved phonon
spectral function at ω ≈ ωph can be understood in the same
picture.

The broad linewidths at q = 0 would normally indicate
an instability to a charge-ordered phase at long wavelengths.
However, once the long-range Coulomb interaction screens
the e-ph interaction we find that the phonons are undressed.
Here, the anomalous broadening at q = 0 is suppressed by
the divergence in the Coulomb interaction at q = 0 while the
total phonon linewidth is reduced throughout the Brillouin
zone. In this case, a small peak remains at nonzero momentum
transfers; however, the magnitude of this peak is much smaller
than the linewidths measured by HREELS [25]. Our results
provide one possible rationale for why anomalously broad
line shapes are not observed in the FeSe/STO system in
the presence of the forward-focused e-ph interaction. They
also suggest that the broadening of the SrTiO3 phonons
(with a maximum at X point) observed by Zhang et al. are
not due to the forward-focused e-ph coupling inferred from
the ARPES measurements. To resolve the forward-focused
e-ph interaction, the HREELS experiments should focus on
smaller values of q, which will be challenging given the large
background signal at q = 0. The observed linewidths may also
be the result of some other source of broadening, or they might

mean that the e-ph interaction is broader in momentum space
than is implied by the ARPES measurements. Further work is
needed to address these possibilities.

Finally, we note that a fully self-consistent calculation
of the phononic and electronic properties would require the
use of the screened e-ph vertex into the expression for
the electron self-energy. However, since the phonons are
essentially undressed, and at nonzero frequencies the coupling
vertex (on the imaginary axis) is nearly unscreened for small
q (the screening effect from electron-hole pairs with a small
total momentum q but a large frequency is rather weak), we
expect that the conclusions reached previously on the replica
band feature and enhanced Tc will be essentially unchanged,
although Tc will be reduced by the elimination of the static
term due to the screening effect. A more rigorous check of this
claim will be carried out in future work.

Note added. Recently, the eprint [39] of a calculation on
the same topic was available on the arXiv server.
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