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A spin-fermion model that captures the charge-transfer properties of Cu-based high critical temperature
superconductors is introduced and studied via Monte Carlo simulations. The strong Coulomb repulsion among
d electrons in the Cu orbitals is phenomenologically replaced by an exchange coupling between the spins of the
itinerant electrons and localized spins at the Cu sites, formally similar to double-exchange models for manganites.
This interaction induces a charge-transfer insulator gap in the undoped case (five electrons per unit cell). Adding
a small antiferromagnetic Heisenberg coupling between localized spins reinforces the global tendency towards
antiferromagnetic order. To perform numerical calculations the localized spins are considered classical as in
previous related efforts. In this first paper, undoped and doped 8 x 8 clusters are analyzed in a wide range of
temperatures. The numerical results reproduce experimental features in the one-particle spectral function and
the density of states, such as: (i) the formation of a Zhang-Rice-like band with a dispersion on the order of
~0.5 eV and with rotational symmetry about the wave-vector (7 /2, 7 /2) at the top of the band and (ii) the
opening of a pseudogap at the chemical potential upon doping. We also observed incipient tendencies towards
spin incommensurability. This simple model allows for an unbiased study of charge-transfer insulators and offers
a formalism intermediate between standard mean-field approximations that fail at finite temperatures in regimes

with short-range order and sophisticated quantum Monte Carlo techniques that suffer sign problems.

DOLI: 10.1103/PhysRevB.98.035124

I. INTRODUCTION

The properties of transition-metal oxides (TMOs) are de-
termined by two groups of electrons: the d electrons at the
transition metals and the p electrons at the oxygens [1]. The
d electrons are believed to be localized and subject to strong
on-site Coulomb repulsion Uy, whereas the p electrons are
considered itinerant with a smaller Coulomb repulsion U,,.
However, the d electrons can be delocalized by hybridization
with the p electrons and, thus, the degree of hybridization, that
varies with the ratio of the Coulomb repulsion to hopping am-
plitudes, plays an important role in determining the properties
of TMOs [1]. In addition, the on-site energies €, and €; of
the p and d orbitals also affect the properties of TMOs [2].
Depending on the relative value of A = €; — €, Uy, and the
bandwidth W of the itinerant electrons, the latter as determined
from the limit when Coulomb repulsion is turned off, the TMOs
may be in various different regimes. The Mott-Hubbard regime
occurs when U,; < A and an insulating gap opens in the d
band if it is half-filled. If U; > A the system is considered to
be in the charge-transfer (CT) regime. A gap defined by an
electron-filled p band and an empty d band opens when the
d band is nominally half-filled. Systems with large Hubbard
repulsions but with A < W/2 can be metallic [2]. Recently,
even the case of negative charge-transfer gaps A < 0 has been
considered [3-6].

Among the most important families of TMOs are the high
critical temperature superconducting cuprates. Their parent
compounds are charge-transfer insulators [2,7], but from the
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theory perspective they have been studied primarily using
single-orbital Hubbard or 7-J models because these models
are simpler than more realistic multiorbital Hamiltonians that
include oxygens. Using simplified one-band models is justified
by the experimental observation of a single-band Fermi surface
[8-11] and by the Zhang-Rice singlet concept where the
three-orbital Hubbard model is approximately mapped into
an effective 7-J model [12]. Although many properties of the
cuprates have been captured by single-band models [7], several
questions regarding the role of the oxygen remain. One of the
main issues is the differences between the properties of doped
Mott insulators, described by single-band models and charge-
transfer insulators where both the d,>_,> Cu orbital and the
P O orbitals are considered. Early numerical studies of three-
band models did not indicate major physical differences among
both approaches [13—15], but other authors have claimed that
the multiorbital character plays a crucial role in the physics of
the cuprates [16,17].

The discovery of the iron-based superconductors [18-21]
brought to the forefront the need to develop models and
numerical approaches to deal with multiorbital systems. In
this context, effective multiorbital spin-fermion (SF) models
were developed that allowed the study of many properties of
these materials, such as magnetic phases, density of states,
Fermi surface, and resistivity, among others [22]. These efforts
on iron pnictides and chalcogenides actually built upon the
double-exchange models for manganites. The aim of the
present paper is to develop a spin-fermion model for the CuO,
planes of the cuprates that can be studied with the Monte Carlo
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(MC) techniques previously developed for the pnictides with
the goal to understand, at least qualitatively, the role played by
the O p, orbitals.

A single-orbital, as opposed to a multiorbital, spin-fermion
model for the cuprates was developed in the 1990s [23]. In that
early effort, the Cu d band was split via a spin-spin interaction
among phenomenological localized spins and the spins of the
itinerant electrons similarly as in the model proposed here.
This interaction prevents the double occupancy of the Cu sites,
crudely mimicking the Hubbard on-site repulsion effects. By
using classical localized spins and Monte Carlo techniques,
several of the static and dynamical properties of the cuprates
were reproduced showing that this avenue, that interpolates
between traditional mean-field approximations and far more
complicated quantum Monte Carlo approaches, is fruitful.
Magnetic incommensurability and a short-distance tendency
towards d-wave pairing was observed upon doping [23,24].

There were also several other spin-fermion models for
the CuO, planes proposed early on in the literature. For
example, in Ref. [25] a model was introduced with localized
quantum spins at the Cu sites and mobile holes that can only
access the O sites. This model is difficult to study and, as
a first approximation, a single hole in a ferromagnetic spin
background was considered. More recently, a spin-polaron
model was developed under similar premises [17] studying
the problem of one hole via the exact diagonalization of a
cluster with 32 Cu atoms and later on using a multimagnon
expansion in a further simplified Hamiltonian with Ising rather
than Heisenberg spin interactions [26]. Other similar models
with localized d electrons were studied in Refs. [16,27,28]
using a variety of numerical and perturbative techniques.

The novelty of the present approach is that not only the p
electrons, but also the d electrons are considered itinerant as
in the three-band Hubbard model, and these mobile fermions
interact with phenomenological localized classical spins which
are introduced to mimic the nondouble occupancy effect in the
Cussites due to the Hubbard U . In this way, the phenomenology
of the three-orbital model for the cuprates with the restriction
on Cu double occupancy can be studied numerically at low
temperatures without sign problems and in larger clusters than
those accessed by either exact diagonalization or quantum
Monte Carlo techniques. Moreover, we can study dynamical
properties, easily vary temperature, and introduce quenched
disorder. Of course, our approach also has important limi-
tations. For example, we can only mimic the formation of
Zhang-Rice singlets by having antiferromagnetically oriented
p spin-1/2 electrons and Cu classical spins, but they do not
form a true spin singlet. However, it may be possible to
study the propagator for Zhang-Rice singlets involving the
quantum p and d electrons [29]. Off-diagonal long-range order
is difficult to observe in an effective single-particle model, but
at least trends and qualitative information could be gathered
by comparing the strength of d- vs s-wave pairing correlations
and find which one is more dominant [24]. Thus, although we
acknowledge that it is difficult to be certain about quantitative
characteristics and predictions, in general, we believe that
qualitative aspects of the problem can be captured by our
simplified approach.

Starting with the standard tight-binding term of the
three-orbital Hubbard model for cuprates and introducing

phenomenological localized spins, we will find the interaction
parameter values that better reproduce the density of states
(DOS) of the full Cu oxide Hamiltonian. The tight-binding
term involves 3d,2_,» Cu and 2p, (2p, or 2p,) orbitals of
the two oxygens in the CuO; unit cell. As already explained,
the Cu-site Hubbard repulsion that splits the half-filled d
band will be replaced by a magnetic coupling between the
spin of the itinerant electrons when at the d orbital and the
Cu localized spins. A small antiferromagnetic Heisenberg
coupling among nearest-neighbor localized spins enhances the
global antiferromagnetic tendencies. In addition, the spins of
the p-orbital electrons are coupled antiferromagnetically to
their two neighboring localized spins.

In the undoped case, with five electrons per CuO, unit cell, it
will be shown that the model leads to a charge-transfer insulator
where, unexpectedly, the gap states have approximately equal
amounts of p and d characters. This is contrary to the widely
held perception that holes reside primarily at the oxygens. This
is also different from the one-orbital Mott insulator approach
in which one-single orbital contributes entirely to the states
that define the gap.

Several other interesting results were obtained. For instance,
long-range antiferromagnetic order, as in the parent compound
of the cuprates, develops with reducing temperature. Incipient
tendencies towards spin incommensurability were observed
with doping. Even more importantly, a study of the one-particle
spectral functions indicates that, in agreement with angular-
resolved photoemission (ARPES) results for the undoped
cuprates, states with wave-vectors (£ /2, £ /2) are the first
to accept doped holes. The ARPES region around these wave
vectors is rotationally symmetric with equal curvature in all
directions, a feature reproduced in single-band models only
after the addition of longer-range hoppings, whereas in our
approach it emerges spontaneously without fine-tuning. In
addition, the lowest state for electron doping has momenta
(r,0) and (0, ) as expected. Moreover, a Zhang-Rice-like
singlet (ZRS) band spontaneously appears in the DOS, and a
pseudogap at the chemical potential develops upon doping.

The paper is organized as follows: in Sec. II results for
the DOS of the full undoped three-orbital Hubbard model are
presented to guide the tuning of parameters in the proposed
spin-fermion model which is introduced in Sec. III. Results
for the DOS and the one-particle spectral functions (photoe-
mission) as well as the magnetic structure factor are presented
in Sec. IV, whereas Sec. V is devoted to the conclusions.

II. CHARGE-TRANSFER REGIMES IN THE
THREE-BAND HUBBARD MODEL

The band gaps and electronic structures of TMOs were
described before [2], and they depend on the relationship
between the charge-transfer energy A and the d-d Hubbard
repulsion Uy. In general, if U; < A the band gap of the
undoped state is controlled by U, and the system is a Mott-
Hubbard insulator, whereas if U; > A the gap is controlled
by A and of charge-transfer nature for A > W /2, where W is
the bandwidth of the oxygen p band [2]. However, the role of
the hybridization between the d and the p bands, important in
cuprates, is often neglected. For this reason, first we present
results for the orbital-resolved density of states of the undoped
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FIG. 1. Schematic of the Cu d,2_ > orbitals at the copper sites of
the square lattice with the sign convention indicated by the colors (red
for 4 and blue for —). The oxygen p,, orbitals with their corresponding
sign conventions are also shown, located at the Cu-O-Cu bonds. The
sign conventions for the #,, and ¢, hoppings are also indicated.

three-orbital Hubbard model obtained using the variational
cluster approach (VCA) [13,30,31] with 2 x 2 clusters that
include 12 sites since there are three atoms (CuO,) per unit
cell. VCA was chosen because we considered that it is the
method that best allows for the study of the density of states,
which will be used to tune the parameters of the spin-fermion
model.

The three-band Hubbard Hamiltonian, in electron notation,
is given by

Hspy = Hip + Hip, (1
where

Hrp = ~tpa ) (Pl oo +He)

iu,o

’ i
—Ipp Z ai,u,v[Pi+(,1/2),,t,g(Pi+(f)/2),v,o-
(u,v),0

+ pPi—(9/2),v,0) +H.c.]

+éa Z ni +ep Z iy T Me Z (”f+<n/2> +nf),
i
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2
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i

iu,o

The operator di , creates an electron with spin o at site i

of the copper square lattice, whereas PL—(ﬂ/z),MJ creates an
electron with spin o at orbital p,, where u = x or y for the
oxygen located at i + % The hopping amplitudes 7,4 and ?,,
correspond to the hybridizations between nearest-neighbors
Cu-O and O-O, respectively, and (u, v) indicate O-O pairs
connected by ¢,, as indicated in Fig. 1. nipﬂﬂ/z)ﬁ (ni”{g) is the
number operator for p (d) electrons with spin o, and €; and
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FIG. 2. Orbital-resolved density of states for the full three-band
Hubbard model with the parameters used before in Ref. [13] where
tp,a =t is the unit of energy and ¢,, = 0.5¢t, A =3¢, and U, = 3¢.
Panel (a) corresponds to U; = 8¢, whereas panel (b) corresponds to
U, = 16t. The dashed line indicates the chemical potential in the
undoped case with one hole (five electrons) per CuO; unit cell. Results
are shown in the electron notation.

-15

€, are the on-site energies at the Cu and O sites, respectively.
If ¢4 =0, then A =¢€; — €, is the charge-transfer gap. The
Coulomb repulsion between two electrons at the same site
and orbital is Uy (Up) for d (p) orbitals. The signs of the
Cu-O and O-O hoppings due to the symmetries of the orbitals
are included in the parameters o; , and ¢ , , and follows the
convention shown in Fig. 1. Finally, u, is the electron chemical
potential.

The orbital-resolved DOS in the electron representation for
the accepted values of Uy = 8¢ [13,14] and U, = 3¢ (where
t =tpq is the energy unmit) is in Fig. 2(a). The effect of
the Coulomb repulsion on the DOS can be understood by
comparing with the tight-binding band dispersion in Fig. 3.
The spectral weight associated with the portion of the band
above the chemical potential in Fig. 3 appears to the right
of the chemical potential in Fig. 2. It is clear that the gap
where the chemical potential is located in Fig. 2 results mostly
from the split due to U, of the top band in Fig. 3 which, as
shown in the figure, arises mostly from the d orbitals (that in
the electron picture are on top). In the noninteracting limit, this
band has a small oxygen content due to the hybridization ¢,
and it has a similar dispersion to the tight-binding band of the
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FIG. 3. Band dispersion for the tight-binding term of the CuO,
Hamiltonian. The orbital content is displayed with red (blue) indi-
cating d (p) character. The dashed line indicates the position of the
chemical potential (or Fermi-level Ef) at density (n) = 5 (undoped
case). The Fermi surface at this density is in the inset. The colors
indicate the orbital content of the bands with the palette on the right
denoting the weight of the d component (e.g., 1 means 100% copper
d, and the oxygen weight is simply one minus the copper weight).

single-band Hubbard model when ¢ = —0.3¢ and " = 0.2¢
hoppings are added [13,32,33]. Thus, the gap opening in the top
band is captured by the single-orbital model with U = 8¢ [13].

As shown in Fig. 2(a), the charge-transfer gap where the
chemical potential resides at U, /t = 8 is about 2¢, similar in
magnitude to the Mott gap of the single-band Hubbard model
with U/t = 8[7,34]. Naively, the DOS gap would be expected
to be proportional to U, but in both cases screening effects
reduce the gap. The main qualitative difference, though, lies in
the orbital composition of the band. As shown in Fig. 2(a),
the spectral weight occupied by the electrons immediately
at the left of the chemical potential has a 50%-50% p-d
orbital composition indicating its charge-transfer character
(red and blue curves have almost identical weight). This is
due to the additional hybridization effects caused by the strong
Coulomb interaction that affects the spectral weight from the
p tight-binding bands. On the other hand, the spectral weight
at the right of the chemical potential in Fig. 2(a) is mostly of
d character, i.e., when electrons are added they populate d-Cu
orbitals.

Note also that a small amount of spectral weight, almost
100% of d character, has been transferred to lower energy (in
the electron picture) in the interval —10 < (w — p)/t < —6.
This weight was previously identified by some authors as the
“lower Hubbard band” (LHB) [4], although a well-defined
LHB is not sharply developed at the value of U, considered
realistic. In fact, we found that, to develop a well-defined LHB,
asin an extreme charge-transfer system [2], a U, as large as 16¢
is required. The DOS in this situation is in Fig. 2(b). The LHB
is located at (w — )/t &~ —16, and it has 100% d character.
Now the separation between the upper and the lower Hubbard
bands is approximately U,, whereas the charge-transfer gap is
only slightly reduced. Still for the two values of U, presented
in Fig. 2 it is clear that due to the p-d hybridization, arising
from the combined effect of interorbital hopping and Coulomb

interaction, the states that define the charge-transfer gap have
mixed orbital character [35]. This indicates that doped holes
will go both into the oxygens and into the coppers since the
spectral weight is comparable among p and d orbitals. To
summarize, the deviations clarified in this section from the
simplistic view of either purely Hubbard or purely charge-
transfer gap materials, which were not emphasized before in
the literature, increase the level of complexity of the system
and will be an important feature that we will try to capture in
the effective model presented next. We conclude this section
stating that cuprates are not sharply charge-transfer insulators
but they reside at the intersection between the Hubbard and the
charge-transfer families.

III. EFFECTIVE THREE-BAND MODEL
FOR CuO, PLANES

The starting point for the effective model that we will
develop is the tight-binding portion of the three-band Hubbard
model given in Eq. (2) with 7,; = 1.3 and t,, = 0.65 eV,
on-site energy €, = —3.6 eV [14], and a A = ¢4 — €, which
is positive (e; = 0) [36].

Note that in the electron representation the undoped case
is characterized by one hole at the coppers and no holes at
the oxygens, which corresponds to five electrons per CuO,
unit cell (the maximum possible electronic number in three
orbitals is 6). The orbital-resolved tight-binding bands along
the I'-X-M-I" path in the Brillouin zone calculated on a
100 x 100 square lattice (with coppers at the sites of the lattice)
is in Fig. 3. The dashed black line is the chemical potential
for electronic density (n) = 5, and the corresponding Fermi
surface is in the inset. An analysis of the orbital composition
of each of the three bands, shown by the color palette in
the figure, indicates that the top band is purely d at the I’
point and becomes hybridized with the p orbitals so that its
d content is 78% at X and 56% at M. The two bottom bands
have pure p character at the Brillouin zone center. The middle
band achieves 43% d character at M, whereas the lower band
has 21% d character at X. Note that the tight-binding Fermi
surface, shown in the inset, has the qualitative form expected in
the cuprates. However, its orbital content is about 75% d only,
showing that the oxygen component is not negligible even if
only one band crosses the Fermi level.

The interaction term in the spin-fermion model is purely
phenomenological as in all spin-fermion models in previous
literature. It is introduced to prevent double occupancy in the
d orbitals by creating lower and upper bands, whereas spectral
weight originating in the p orbitals remains in the middle in
such a way that a charge-transfer insulator results for five
electrons per unit cell. To achieve these goals, we introduce
phenomenological localized spins at the Cu sites. These on-site
spins will be coupled via an antiferromagnetic coupling Jsq to
the spins of the mobile d electrons at the same site via

Hsy = Jsa Y _Si-si, “

where S; denotes the localized spins at i, s; = dia&a,gdi,,g
is the spin of the mobile d electrons, and 6,4 are Pauli
matrices. Since this term is phenomenological, in principle,
the coupling between localized and itinerant spins can be either
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antiferromagnetic (AF) or ferromagnetic (FM) since in the AF
(FM) case the lower d band will contain electrons with spins
antiparallel (parallel) to the localized spins. For the classical
localized spins used here, the results are independent of the
sign of Jgq, and we will simply consider the AF coupling as
our convention. Note that in the absence of electronic hopping
this interaction would lead to a half-filled d band and totally
filled p bands for the overall density (n) = 5 per CuO; cell.

To enhance further the tendency towards antiferromagnetic
order in the undoped case, as in real undoped cuprates,
an antiferromagnetic Heisenberg coupling Jar between the
localized spins is also introduced via

Har = Jar ) Si- Si. (5)

Finally, a coupling Js, between the localized spins and the p-
electron spins at each of the four neighboring oxygens is added
(introducing effectively magnetic frustration upon doping)

Hsp, = Jsp Z Si * Siv(a/2)s (6)
in
where

o= xx or +9y and Si+(p/2) =

} -
Pir(p/2),1,0%0B Pit(2/2).1. 8+ o
Thus, the SF Hamiltonian defined here is given by four
terms as

Hsg = Hrtp + Hsq + Har + Hsp. @)

This phenomenological Hamiltonian we propose is reminis-
cent of the model in Ref. [17] except that the authors work
in the limit where the d electrons are fully localized and only
contribute their magnetic degree of freedom.

The computational simplification that allows the numerical
study of our Hamiltonian is that the localized spins are assumed
classical [37]. With this approximation, the full Hgg can be
studied with the same MC procedure widely employed before
for the pnictides [22] and double-exchange manganites [38].

To select the values of the couplings, we studied the
properties of the model for a variety of parameters finding
the combination that better reproduced some experimental
properties of the cuprates and the results in Fig. 2. In Fig. 4,
we present the orbital-resolved density of states for Jap =
0.1, Jsp =1 eV, and several values of Jsq. At Jsg = 0in panel
(a), the chemical potential (vertical dashed line) is in the middle
of the upper band of mostly d character, and the system is
metallic. However, at Jgq = 2 eV, panel (b), the upper band
is split. Now the undoped system is an insulator with the
chemical potential inside a gap. Although the gap is similar to
the charge-transfer gap of the cuprates A ~ 2 eV [39], note that
the band to the left of 1 has primarily d character. By increasing
further Jgq both the magnitude of the insulating gap and the p
composition of the band below u increase. We found that, for
Jsa = 3 eV, panel (¢), the d and p orbitals contribute equally to
the density of states just below the chemical potential as in the
three-orbital Hubbard model discussed before with U,; = 8¢
[Fig. 2(a)] and the charge-transfer gap is about 3 eV. If Jgq
continues to increase, then the d spectral weight continues to
be redistributed, and for Jgq = 4 eV [panel (d)] there is more p
than d weight to the left of the chemical potential, but no sharp
lower band has yet developed (equivalent to a Hubbard lower
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FIG. 4. Orbital-resolved density of states for the spin-fermion
model with J,r = 0.1 and Js, = 1 eV. The various panels correspond
to () Jsg = 0, (b) Jsa = 2, (¢) Jsa = 3, (d) Jsq =4, (e) Jsq = 8, and
(f) Jsq = 12 (all in eV units). Results are for the undoped case, i.e.,
(n) =5 and were obtained using an 8 x 8 lattice at a temperature
of T ~ 120 K. The d (p) spectral weight is in red (blue), whereas
the total spectral weight is indicated by the black line. The chemical
potential is at the vertical dashed line.

band). This lower band develops when Jsq = 8 eV as shown in
panel (e). Finally, for extreme values, such as Jgg = 12 eV in
panel (f), the p-d hybridization is removed, and the upper and
lower d bands surround the pure p bands. After this analysis,
we set Jsg = 3 eV as the value that may better capture the
properties of the cuprates.

We observed that, if the signs of the couplings Jsq and Js,
are simultaneously reversed, turning both couplings FM, the
results are the same except that the up and down spins are
interchanged since the only modification in the Hamiltonian is
thato — —o . However, if only the sign of one of the couplings
is changed, for example, Js4 = —3 eV, the results are different,
and the system develops phase separation (details not shown).
For this reason only AF couplings between the itinerant and
the localized spins will be considered here.

The calculations shown below were performed using
squared 8 x 8 clusters with periodic boundary conditions.
These lattice sizes are larger than those accessible to study the
three-band Hubbard model either via quantum Monte Carlo
techniques [29,40,41] or density-matrix renormalization-
group (DMRG) techniques [42]. During the simulation the
localized spins S; evolve via a standard Monte Carlo procedure,
whereas the resulting single-particle Hamiltonian for the itiner-
ant p and d electrons is exactly diagonalized [38]. The present
simulations are performed at inverse temperature 8 = (kzT )™
ranging from 10 to 400 in units of eV~! or temperature T
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FIG. 5. Spin-fermion model density of states with Jgq =
3, Jsp = 1,and Jur = 0.1 (allineV)usingan 8 x 8lattice and several
inverse temperatures (8 = 400 corresponds to 7' ~ 30 K, whereas
B = 10 corresponds to T ~ 1200 K). (a) corresponds to the undoped
case of (n) = 5, whereas (b) is at 25% doping (n) = 4.75 (16 holes).
The inset shows the pseudogap in the ZRS band at the chemical
potential.

from 1200 to 30 K [43]. Reaching such low temperatures is
an advantage of the present approach because Hubbard model
quantum Monte Carlo studies can only be performed at high
temperatures due to the sign problem whereas the DMRG
can only be performed at zero temperature and ladderlike
cylindrical geometries.

IV. RESULTS

A. Density of states and band structure

The DOS for the undoped case ({(rn) = 5) was calculated for
B/t ranging from 10 to 400 and r = 1 eV. Because of the Jsq
interaction, the width of the spectrum increases from 9.5 eV in
the noninteracting case (Fig. 3) to about 12 eV at Jgg = 3 eV
[Fig. 4(c)], and in this case as shown in Fig. 5(a), the chemical
potential is in a charge-transfer gap. The dispersion of the bands
is reduced as the temperature decreases rendering the features
in the DOS sharper. In addition, to the left of the chemical
potential there are two structures, and the peak closest to the
chemical potential could be identified with a band resembling
the ZRS band.

6 :
4 |(@) 1(b)
o — 7 =

AO

= - —

3_2 o el i ———
-4 I 1 ]
6 s g §
-8 T I 1 1

-10

r X M T'X Y 4 8 12 16
FIG. 6. (a) Spectral function A(k, w) along selected directions in
the Brillouin zone for the spin-fermion model with Jsg = 3, Jg, =1,
and Jar = 0.1 (all in eV) using an 8 x § lattice at low-temperature
T ~ 30 K in the undoped case. (b) Orbital-resolved DOS states with

parameters as in panel (a). The orbital spectral weight is indicated in
red (blue) for the d (p) electrons. Black is the total.

The photoemission one-particle spectral functions A(k, @)
were also calculated, and their projections along selected
directions of the Brillouin zone are shown in Fig. 6(a) at
our lowest temperature of g =400eV~! (ie., T ~ 30 K).
Below the chemical potential, the closest state in the ZRS-like
band is at momentum (7 /2, 7r/2) (half-point in the M-I" and
X-Y directions) indicating that this will be the momentum
of a doped hole as expected in the cuprates [7,13]. On the
other hand, the lowest states in the upper band are at X =
(,0) and Y = (0, ) suggesting that doped electrons will
have these momenta as also observed before [13]. Remark-
ably, we have found that the maximum around (7/2, 7/2)
is considerably symmetric along I'-M and X-Y, i.e., with
a similar down curvature, a characteristic of the dispersion
observed in early photoemission experiments for the undoped
Sr,CuO,Cl, cuprate [10] that only can be reproduced in
one-band Hubbard and 7-J models by adding diagonal and
second nearest-neighbor hoppings [44,45]. In fact, comparing
with the experimental data [10] the dispersion in our results
along directions I'-M and X-Y is 0.5 and 0.8 eV, respectively,
as shown in panels (a) and (b) of Fig. 7, close to 0.3-0.4 eV
observed experimentally [10]. Note that in the single-band
models with only nearest-neighbor hoppings the dispersion
along X-Y is very flat [10,44,45] whereas a stronger dispersion
is established along that direction in the spin-fermion model
because of the p orbitals.

The orbital-resolved DOS is displayed in Fig. 6(b). Because
the conduction band is mostly d in character, doped electrons
will be located into d orbitals, whereas the ZRS-like band
is a 50-50 mix of p-d character as discussed before. This
indicates that, due to the additional hybridization caused by
the interactions, doped holes distribute evenly among oxygen
and copper atoms, an unusual concept in cuprates where it
is widely assumed that holes have entirely oxygen character.
In addition, we have observed that the orbital decomposition
supports the identification of the charge-transfer band with a
ZRS-like band since its p character vanishes approaching I",
Fig. 8(b), whereas its d character is small close to M, see
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M r X Y

FIG. 7. Spectral function A (K, w) for the ZRS-like band using the
spin-fermion model with Jgg = 3, Js, = 1,and Jop = 0.1 (allineV)
onan 8 x 8 lattice at low-temperature 7 ~ 30 K in the undoped case.
(a) are results along the M-I" direction in the Brillouin zone, whereas
(b) is the same as (a) but along the X-Y direction.

panel (a), in agreement with the phase factor of the ZRS wave
function [13,46,47]. This is similar to results obtained for the
three-band Hubbard model [13], except that the dispersion of
the ZRS observed in this previous VCA study is on the order
of 1,4 ~ 1.3 eV, slightly larger than the dispersion observed
experimentally and in the spin-fermion model. Finally, in
Fig. 6(b) there is a lower band, mostly of p character with
a small d contribution, similar to the lower spectral weight,
observed in the three-orbital Hubbard model for U,; = 8¢ in
Fig. 2(a).

Consider now 25% hole doping. We focus on this doping
to compare with results for the three-orbital Hubbard model
obtained using the local-density approximation in density func-
tional theory combined with the dynamical mean-field theory
(LDA + DMFT) [4,48]. The DOS at different temperatures is
in Fig. 5(b). An important difference with the undoped case
[panel (a)] is that as the temperature decreases the charge-
transfer band develops a pseudogap at the chemical potential

r MT M

FIG. 8. Orbital-resolved spectral function A(k, w) for the ZRS-
like band shown along the I'-M direction in the Brillouin zone. We
use the spin-fermion model with Js4 = 3, Jsp = 1,and Jog = 0.1 (all
in eV) on an 8 x 8 lattice at low-temperature 7 ~ 30 K and in the
undoped case. Panel (a) are results for the d-orbital spectral weight,
and (b) are results for the p-orbital spectral weight.

o N A~ O

\V]
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FIG. 9. (a) Spectral function A(k, w) shown along selected di-
rections in the Brillouin zone for the spin-fermion model with
Jsa =3, Jsp =1, and Jor = 0.1 (all in eV) on an 8 x 8 lattice at
low-temperature 7 ~ 30 K and with 25% hole doping. (b) Orbital-
resolved DOS corresponding to panel (a). The orbital spectral weight
is indicated in red (blue) for the d (p) electrons. Black is the total.

(inset of the figure). In Ref. [48] the spectral weight to the right
of the chemical potential was identified with the quasiparticle,
whereas the spectral weight to the left was identified with the
incoherent part of the Zhang-Rice singlet. Our main features
of the DOS are in qualitative agreement with those observed
in the LDA-DMFT study of the three-orbital Hubbard model:
The evolution with doping of the ZRS band shows the split
of the band into a quasiparticle and an incoherent band. This
behavior is observed in Fig. 9 along the main directions in the
Brillouin zone in panel (a), whereas in (b) the DOS pseudogap
develops.

Figure 10(a) shows that the dispersion is no longer symmet-
ric about (r/2, /2) along the nodal direction I'-M as in the
undoped case. The quasiparticle peak is below the chemical
potential at I" and above at M, whereas the incoherent weight
remains below p. This feature is reminiscent of the “waterfall”
observed experimentally in the cuprates [49-51]. In addition,

0.4
0.2
0.0

=-0.2

~.0.4
-0.6
-0.8

(@)

-1.0
M

r X Y

FIG. 10. (a) Spectral function A (K, w) corresponding to the ZRS-
like band shown along the M-T" direction in the Brillouin zone for the
spin-fermion model with Jsqs = 3, Js, = 1,and Jag = 0.1 (allineV)
using an 8 x 8 lattice at low-temperature 7 ~ 30 K and for 16 doped
holes. (b) the same as (a) but for the X-Y direction.
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FIG. 11. Static magnetic structure factor S(k) for the localized
spins along representative directions in the Brillouin zone for the
undoped spin-fermion model with Jgg = 3, Js, = 1, and Jop = 0.1
(all in eV) using an 8 x 8 lattice at various values of the inverse
temperature (8 = 400 corresponds to 7" ~ 30 K, whereas g = 10
corresponds to 7' ~ 1200 K). The inset shows the evolution of the
structure factor at k = (7, ) vs temperature for the classical spins
(squares) and for the spins of the electrons in the d orbitals (circles).
The quantum values have been multiplied by 5 for the sake of
comparison with the results for the classical spins.

see panel (b) of the figure, the quasiparticle crosses twice the
chemical potential along X-Y defining a Fermi surface.

B. Magnetic properties

Consider now the magnetic properties of the model. In
the undoped case, the system develops long-range antifer-
romagnetic order in our finite system. The real-space spin-
spin correlation functions between the localized spins are
measured vs distance, and their Fourier transform provides
the static magnetic structure factor S(k). In Fig. 11, S(k) is
shown for various inverse temperatures 8 and presented along
representative directions in the Brillouin zone. The sharp peak
is correctly located at (s, ), and its value increases as the
temperature decreases as expected. The inset shows S(k) at
k = (m, ) varying temperature. A robust antiferromagnetic
order starts to develop between 200 and 500 K, in rough
quantitative agreement with the real Néel temperature of
Ty =~ 300 K in the cuprates [7]. In the spin-fermion model,
there is a natural tendency towards antiferromagnetism due
to the nesting of the noninteracting Fermi surface, but the
addition of a small antiferromagnetic Heisenberg coupling
Jar between the localized spins further stabilizes the expected
antiferromagnetic order in the undoped case. The electrons in
the Cu d orbitals are strongly coupled to the localized spins,
and their spin correlations follow the behavior of the classical
spin correlations as shown in the inset of the figure. As a
consequence, in what follows it is sufficient to focus on the
behavior of the classical spins.

Upon doping, the antiferromagnetic interaction between the
electrons in the p, orbitals located at the oxygens and the
localized spins at the coppers introduces magnetic frustration.
This slightly affects the antiferromagnetic order as observed
in the curves for different dopings in Fig. 12. The intensity of

FIG. 12. Static magnetic structure factor S(k) for the localized
spins along representative directions in the Brillouin zone for the spin-
fermion model with Jgg = 3, Js, = 1,and Jyr = 0.1 (allineV) using
an 8 x 8§ lattice at temperature of 7 ~ 120 K and for the indicated
number of holes. The inset shows the evolution of S(s, 7) (squares)
and S(m, 37 /4) (circles) at T ~ 120 K varying the number of doped
holes as indicated.

the peak at k = (=, ) decreases, whereas the weight of S(k)
at k = (m, 37 /4) increases as shown in Fig. 12 where S(k)
is presented at a temperature of 7 ~ 120 K along represen-
tative directions in the Brillouin zone for different electronic
densities. The increasing transference of weight to (7, 37/4)
with hole doping crudely resembles [52] the expected trend
towards the well-known magnetic incommensurability of the
cuprates [53-55] at momenta (;r, ¥ — §) and (7w — &, 7). Ex-
perimental evidence has indicated that this incommensurability
isrelated to stripe structures either static or dynamical [56], and
more recently the possibility of states with intertwined spin,
charge, and superconducting orders was also proposed [57].

The study of the possible existence of stripes, ZRS struc-
tures, high-spin polarons, and intertwined states in the ground
state upon doping are future projects that can be addressed via
the three-orbital spin-fermion model introduced here.

V. CONCLUSIONS

In this paper, a phenomenological three-orbital model that
reproduces the charge-transfer properties of superconducting
cuprates was introduced. The notorious difficulty to incor-
porate the electronic Coulomb repulsion of the multiorbital
Hubbard model was alleviated by introducing antiferromag-
netic interactions between the spins of the electrons in the
three itinerant orbitals and phenomenological spins located
at the coppers. The interaction of the d electrons with the
localized spins effectively induces a gap in the half-filled d
band and prevents double occupancy, similarly as the Hund
interaction does in double-exchange models for manganites.
Considering the localized spins as classical as in similar models
for manganites [38], one-orbital cuprates [23], and iron-based
superconductors [22], the Hamiltonian becomes quadratic in
the fermionic fields, and it can be studied by classical Monte
Carlo simulations combined with the diagonalization of the
effective single-particle quantum Hamiltonian. This process
allows the study of a three-orbital model in larger clusters
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than those accessible to multiorbital Hubbard models and,
moreover, the full range of temperatures can be explored.

Several features of the band structure experimentally ob-
served in the cuprates are well reproduced by this simplified
new model, such as the development of a charge-transfer
gap in the undoped case framed by a conduction band of
mostly d character with minima at momenta (77, 0) and (0, )
and a ZRS-like band with a 50/50 contribution from p and
d orbitals with a maximum at (r/2, w/2). In addition, the
band dispersion about the maximum is symmetric along I"-M
and X-Y in the Brillouin zone, an experimental property of
the cuprates that is not captured by single-orbital models
unless ¢' and #” hoppings are added. Upon doping, a pseu-
dogap in the ZRS band develops at the chemical potential,
and spectral features crudely resembling the waterfall are
observed.

Some drawbacks of the model here presented are a tendency
towards ferromagnetism upon large hole doping (which may
prevent the study of very overdoped regimes) and the difficulty
in capturing off-diagonal-long-range order due to the single-
particle nature of the Hamiltonian (so that only a trend towards
d-wave pairing rather than actual long-range order could
eventually be observed). Another weakness is that despite the
accessibility to numerically exact calculations in clusters larger
than those that can be studied with fully quantum three-orbital

many-body Hamiltonians, further approximations, such as the
traveling cluster approximation, will need to be implemented
to study even larger systems.

Despite the limitations just mentioned, still many properties
of charge-transfer systems can be addressed. The correct
magnetic properties of the cuprates are captured by the spin-
fermion model that displays tendencies towards long-range
antiferromagnetic order in the undoped case. It also starts
to show incipient indications of incommensurability along
(r —§,m) and (7, ¥ — &) in the doped case. These features
upon doping, which may originate in stripes or intertwinned
order and that may require cylindrical boundary conditions
for their stabilization, can only be seen clearly using larger
clusters, and they will be the subject of future work.
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