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Using Monte Carlo techniques, we study a three-orbital CuO2 spin-fermion model for copper-
based high critical temperature superconductors that captures the charge-transfer properties of
these compounds. Our studies reveal the presence of spin order in the parent compound and, more
importantly, stripe spin and charge order under hole doping. Due to the p-d orbital hybridization,
the added holes are approximately equally distributed among the two p orbitals of the oxygen atoms
and the d orbital of the copper atoms in the unit cell. In rectangular clusters of dimension 16×4 half-
filled stripes are observed upon hole doping, namely whenNh = 2n holes are introduced in the system
then n stripes of length 4 are formed along the short direction. The original antiferromagnetic order
observed in the parent compound develops a π−shift across each stripe and the magnetic structure
factor has a peak at wavevector k = (π − δ, π) with δ = 2πNh/N = πNh/2L, where L = 16. The
electronic charge is also modulated and the charge structure factor is maximized at k = (2δ, 0). As
electrons are removed from the system, intracell orbital nematicity with 〈npx〉 − 〈npy 〉 6= 0 develops
in the oxygen sector, as well as intercell magnetic nematicity with 〈Szi,d(Szi+x,d−Szi+y,d)〉 6= 0 in the
spin copper sector, in the standard notation. This occurs not only in rectangular but also in square
8×8 lattices. Overall, our results suggest that the essence of the stripe spin and charge distribution
experimentally observed in hole-doped cuprates are captured by unbiased Monte Carlo studies of a
simple hole-doped charge-transfer insulator CuO2 spin-fermion model.

PACS numbers: 74.72.-h, 74.72.Gh, 71.10.Fd, 71.15.Dx
Keywords: superconducting cuprates, charge-transfer insulator, multi-orbital models

I. INTRODUCTION

The parent compounds of the high critical temperature
(Tc) superconducting cuprates are known to be charge-
transfer insulators (CTI) [1, 2] with a band structure
influenced by the hybridization of the dx2−y2 orbital in
the copper atoms and the pσ=x,y orbitals in the oxygen
atoms. However, due to the technical difficulty of study-
ing interacting many-body multiorbital Hubbard mod-
els, several of their properties, such as the incommensu-
rate spin order and a tendency towards d-wave supercon-
ductivity upon doping, have been studied using simpler
single-orbital systems, such as the one-orbital Hubbard
and t − J models [2]. The use of single-orbital mod-
els relies on the Zhang-Rice singlet formalism that ap-
proximately maps a three-orbital Hubbard model into
an effective t − J model [3] and also on the photoemis-
sion experimental observation of a single-band Fermi sur-
face [4–7]. Despite the reasonable good agreement be-
tween numerical studies on one- and three-orbital mod-
els [8–10], several authors have claimed that the multior-
bital CuO2 character of the cuprates plays a crucial role
in their physics [11, 12] that cannot be neglected. While
this issue is still being debated, it is clear that models
that include the p-oxygen orbitals, in addition to the d-
copper orbital, are more accurate and needed to study the
problem of how the doped charges are distributed. Par-
ticularly in view of the charge-transfer character of the
cuprates, doped electrons primarily are located into the
Cu d-orbitals, as in Mott insulators, while doped holes oc-

cupy, at least in part, the O p-orbitals. In fact, from the
Zaanen-Sawatzky-Allen (ZSA) paradigm [1], holes doped
into a CTI should reside primarily, not only partially, in
the p orbitals of the oxygens. This is the assumption
made in the Zhang-Rice approach [3] as well. However,
recent NMR experimental results appear to indicate that
the hole distribution between p and d orbitals could be
material dependent [13, 14]. More work is clearly needed
to clarify this matter.

In addition, there is strong theoretical and experimen-
tal interest in understanding the charge structure of the
stripes observed in various hole-doped cuprates [15–20].
Early experimental results in single-layer LSCO at 1/8-
hole doping clearly indicated the existence of nearly static
half-filled stripes accompanied by magnetic order com-
mensurate with the charge stripes [15–17]. On the other
hand, in bilayered YBCO, the magnetic and charge order
do not appear to coexist [18–20]. On the theory front,
it has been recently well-established that the stripes sta-
bilized in the ground state of the single-orbital Hubbard
model are fully filled with holes [21], as opposed to half-
filled. This appears to be a general characteristic of var-
ious single-orbital models, because it was observed in a
single-orbital spin-fermion model for the cuprates devel-
oped by some of us in the 90s [22] and, more recently,
in a frustrated t − J model as well [23]. Early indica-
tions of half-filled stripes observed with density matrix
renormalization group (DMRG) [24] approaches in the
one-orbital Hubbard models [25] are now attributed to
a finite-width effect [21]. While there are some DMRG
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indications of half-filled stripes in the t − J model [26]
and more recently in the Hubbard model with additional
nearest-neighbor t′ hopping [27], the differences in the
conclusions using different models and techniques under-
scores the need to go beyond single-orbital models to
better investigate the ground state charge and magnetic
properties of hole-doped cuprates.

However, studying multiorbital models is a very chal-
lenging task. Magnetic stripes have been recently ob-
served via Quantum Monte Carlo (QMC) simulations of
a three-orbital CuO2 Hubbard model [28]. The simula-
tions were performed using 8×8 and 16×4 clusters, as we
do. However, due to the sign problem, the studies were
carried out at high temperature (T ≈ 1, 000 K), consid-
erably above the regime in which the charge structure of
the stripes can be studied [28]. Also DMRG studies of
the same model in 8× 4 clusters, smaller than discussed
in our publication and using external fields at the edges
to stabilize the magnetic order, indicate the existence
of half-filled stripes [29]. Because the above mentioned
QMC results are at high temperatures without charge
order and the 8× 4 DMRG calculations may be affected
by size effects and need external fields for magnetic stabi-
lization, simpler alternatives to try to capture the essence
of the problem are worth investigating.

For this reason, in this manuscript we study a recently
introduced simple three-orbital spin-fermion model [30],
that captures the properties of the charge-transfer insu-
lating parent compound of the cuprates and that can
be studied upon doping in a wide range of tempera-
tures and relatively large clusters. This seems ideal to
explore qualitatively the charge and spin properties of
doped cuprates.

Our publication is organized as follows: first, the model
is described in Section II; then, the magnetic and charge
structures observed upon hole doping are presented in
Section III; finally, Section IV is devoted to the conclu-
sions. Overall, we believe that the simple spin-fermion
CuO2 model is able to capture the essence of the Cu-
oxide physics with regards to the hole-doped system and
its magnetic and charge properties. Extensions of our
model to larger lattices are in principle doable using the
Traveling Cluster Approximation [31], as well as a study
of a wide range of temperatures, from very low to very
high, the addition of quenched disorder, and the study
of real-time or real-frequency dynamical and even d.c.
transport properties. In these regards, we believe our
effort opens a fertile area of research that will lead to
qualitative progress in the study of Cu-based high-Tc su-
perconductors and hole doped charge-transfer insulators
in general.

II. MODEL

In the present effort, the three-orbital spin-fermion
model for the cuprates [30], which considers the 3dx2−y2

Cu and 2pσ (2px or 2py) orbitals of the two oxygens in the

CuO2 unit cell, will be studied using primarily 8× 8 and
16 × 4 clusters [32]. As described in our previous publi-
cation, the Hubbard repulsion at the Cu sites that splits
the half-filled d-band is replaced by an effective magnetic
coupling between the spin of the itinerant electrons at the
d-orbital and phenomenological classical spins localized
at the Cu sites. This is similar to the Mean Field Monte
Carlo approximation recently introduced [31], where the
local mean-field parameters in the Hartree approxima-
tion (classical variables) are coupled to itinerant fully
quantum fermions. Within this framework, an unbiased
Monte Carlo simulation of the classical spins can be used
to study the model. In this context, there are no sign
problems which means that the whole range of doping
and temperatures can be explored. Since the resulting
Hamiltonian is bilinear in the fermionic operators, larger
clusters than for the full multiorbital Hubbard model can
be studied.

FIG. 1: (color online) Schematic drawing of the Cu dx2−y2

orbitals at the copper sites of the square lattice, with the
sign convention indicated by the colors (red for + and blue
for -). The oxygen pσ orbitals with their corresponding sign
convention are also shown, located at the Cu-O-Cu bonds.
The resulting sign convention for the tpd and tpp hoppings is
also indicated.

More specifically, the three-orbital spin-fermion (3SF)
Hamiltonian is given by [30]

H3SF = HTB +HSd +HAF +HSp, (1)

with

HTB = −tpd
∑
i,µ,σ

αi,µ(p†
i+ µ̂

2 ,µ,σ
di,σ + h.c.)−

tpp
∑

i,〈µ,ν〉,σ

α′i,µ,ν [p†
i+ µ̂

2 ,µ,σ
(pi+ ν̂

2 ,ν,σ
+ pi− ν̂2 ,ν,σ

) + h.c.]

+εd
∑
i

ndi + εp
∑
i,µ

np
i+ µ̂

2
+ µe

∑
i,µ

(np
i+ µ̂

2
+ ndi ),

(2)

where the operator d†i,σ creates an electron with spin σ

at site i of the Cu square lattice, while p†
i+ µ̂

2 ,µ,σ
creates
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an electron with spin σ at orbital pµ, where µ = x or
y, for the oxygen located at i + µ̂

2 . The hopping am-
plitudes tpd and tpp correspond to the hybridizations be-
tween nearest-neighbors Cu-O and O-O, respectively, and
〈µ, ν〉 indicate O-O pairs connected by tpp as indicated
in Fig. 1. np

i+ µ̂
2 ,σ

(ndi,σ) is the number operator for p (d)
electrons with spin σ, while εd and εp are the on-site en-
ergies at the Cu and O sites, respectively. ∆ = εd -εp
is the charge-transfer gap. The signs of the Cu-O and
O-O hoppings due to the symmetries of the orbitals is
included in the parameters αi,µ and α′i,µ,ν and follow the
convention shown in Fig. 1. The parameter values are set
to tpd = 1.3 eV and tpp = 0.65 eV. The on-site energy is
εp = −3.6 eV [8], and thus ∆ = εd − εp is positive since
we follow the convention εd = 0. The electron chemical
potential is µe. The remaining terms of H3SF are

HSd = JSd

∑
i

Si.si, (3)

where Si denotes the phenomenological localized spins
at site i, while si = d†i,α~σαβdi,β is the spin of the mobile
d-electrons, with ~σαβ the Pauli matrices. The other two
terms are:

HAF = JAF

∑
〈i,j〉

Si.Sj, (4)

and

HSp = JSp

∑
i,µ̂

Si.si+ µ̂
2
, (5)

where µ̂ = ±x̂ or ±ŷ and si+ µ̂
2

= p†
i+ µ̂

2 ,µ,α
~σαβpi+ µ̂

2 ,µ,β
.

As mentioned above, the localized spins are assumed
classical [30] which allows H3SF to be studied with the
same Monte Carlo (MC) procedure widely employed be-
fore for the pnictides [33] and double-exchange mangan-
ites [34]. The values of the couplings, specifically JAF =
0.1 eV, JSp = 1 eV, and JSd = 3 eV, were selected in our
previous effort by comparing the orbital-resolved density
of states (DOS) with that of the three-orbital Hubbard
model for the cuprates obtained using the variational
cluster approximation on a 12-sites cluster [30]. The
calculations shown below were performed using squared
8 × 8 and rectangular 16 × 4 clusters [32] with periodic
boundary conditions (PBC). These lattice sizes are larger
than those accessible to study the three-band Hubbard
model either via quantum Monte Carlo [35–37] or via
DMRG [29]. During the simulation the localized spins
Si evolve using a standard Monte Carlo procedure, while
the resulting single-particle fermionic matrix is exactly
diagonalized. The simulations are performed at inverse
temperature β = (kBT )−1 ranging from 10 to 800 in units
of eV−1, equivalent to temperatures T from 1200 K to
15 K [38]. In the electron representation the undoped
case corresponds to one hole at the coppers and no holes
at the oxygens, i.e. 5 electrons per CuO2 unit cell (the
maximum possible electronic number in three orbitals is
6).

III. RESULTS

A. Charge and spin structures

The undoped system with 5 electrons per unit cell
shows antiferromagnetically ordered localized spins and
an almost uniform distribution of the electronic charge.
For β = 800 eV−1 (T ∼ 15 K) we found numerically
that < nd >= 1.164 and < npσ >= 1.918, close but not
identical to < nd >= 1 and < npσ >= 2 which would
have been the values in the absence of p − d hybridiza-
tion. These results are virtually independent of the clus-
ter size used [32]. In panel (a) of Fig. 2, we display circles
which are proportional to the local hole density given by
< nhi,α >= 2− < ni,α > with α = d or pσ and i the site
index, using a 16 × 4 cluster at T ∼ 15 K. The arrows
denote the orientation of the localized spins in the x− z
plane and clearly show the staggered antiferromagnetic
order that develops [39]. This magnetic order character-
izes also the mobile quantum spins in the Cu, as shown
by the peak at wavevector k = (π, π) that develops in
the magnetic structure factor in panel (a) of Fig. 3 (trian-
gles). The uniform charge distribution is indicated by the
featureless charge structure factor N(k) shown in panel
(b) of the same figure (triangles).

Consider now the case of doping corresponding to 4
holes. The charge is no longer uniformly distributed
as shown in Fig. 2 (b), where in this panel the size
of the circles is proportional to the difference between
the density ni,α and the corresponding electronic den-
sity in the undoped case, panel (a), to better visualize
the stripes. It is clear from panel (b) that two hole-
rich stripes develop. To a good approximation, there are
two holes per stripe indicating that each stripe is half-
filled, as it is the case in the real hole-doped cuprates
according to neutron experiments [15–20]. Figure 3 (b)
(crosses) shows that a distinct feature appears in N(k) at
k = (π/4, 0) = (2δ, 0) where δ indicates the displacement
of the peak in the magnetic structure factor, that now is
located at k = (π − δ, π) = (7π/8, π) as shown in panel
(a) of the figure (crosses). The incommensuration in the
quantum spins indicates the presence of π-shifts in the
magnetic order across the stripes, which can be observed
also visually in the planar projection of the classical spins
in Fig. 2 (b) [40].

The formation of additional half-filled stripes contin-
ues as more holes are added. For example, 6 (8) holes
form 3 (4) stripes, as shown in panels (c) and (d), re-
spectively, of Fig. 2. The evolution of the magnetic and
charge incommensuration δ with doping is observed also
in Fig. 3 where the peaks in the structure factors con-
tinue to shift. Notice that for 6 holes (squares) the peak
in N(k) indicates that 2δ = 3π/8, but since k = 3π/16
is not allowed in the finite lattice used, the peak in S(k),
that should be at (13π/16, π), is still located at (7π/8, π)
(squares). For 8 holes (circles) δ = π/4 from the peak
in N(k) and thus, S(k) shows a peak at (3π/4, π) which
coexists with another peak at (π, π). Notice that 8 holes
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(a) Nh = 0

(b) Nh = 4

(c) Nh = 6

(d) Nh = 8

2

FIG. 2: (color online) Charge and spin configurations obtained with the spin-fermion model using JAF=0.1 eV, JSp=1 eV, and
JSd=3 eV and employing 16×4 clusters at β = 800 eV−1 (i.e. T ∼ 15 K) for the following electronic densities: (a) the undoped
case with 5 electrons (i.e. 1 hole) per unit cell, with the radius of the circles proportional to the hole charge which is nhd = 0.82
in the Cu sites and nhp = 0.09 in the O sites (nearly uniform distribution) for the couplings used in our Hamiltonian; (b) results
for 4 doped holes; (c) 6 doped holes; (d) 8 doped holes. In panels (b), (c), and (d) the radius of the circles are proportional
to the difference between the electronic density in the doped system and that in the undoped case panel (a) to better visualize
the hole positions. The arrows in all panels are proportional to the classical spin projection in the x− z plane shown.

corresponds to 1/8 doping in the 16 × 4 cluster and the
well-known 4a periodicity (with a the lattice constant) is
observed. The coexistence of the incommensurate peak
with that at (π, π) for 8 holes was found to be ubiqui-
tous for this doping in our simulations. It appeared both
when a random spin configuration was used as starting
point of the Monte Carlo simulation or when an ordered
spin configuration with a maximum at (3π/4, π) in the
spin structure factor was used. In both cases, ordered
and disordered starting spin configuration, the simula-
tion converged to the same final state characterized by 4
charge stripes and the double-peaked magnetic structure
which we found already present in the snapshots. Larger
clusters will be needed in order to explore whether the
peak at (π, pi) arises from a finite size effect.
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FIG. 3: (color online) (a) The magnetic structure factor Sd(k)
for the spin of the electrons in the Cu orbital along the
M-Y direction in the spin-fermion model with JAF=0.1 eV,
JSp=1 eV, and JSd=3 eV, using a 16× 4 cluster and β = 800
eV−1 (T ∼ 15 K) for the number of doped holes indicated in
the caption. (b) The total charge structure factor N(k) along
the Γ-X direction for the same parameters as in panel (a).
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B. Nematicity

Together with the stripes, an interesting feature that
develops with doping is p-orbital nematicity. In Fig. 4 (a)
the orbital nematic order parameter defined as On =
〈ni,px−ni,py 〉 is shown vs the number of doped holes and
for values of β ranging from 10 to 800 eV−1 (tempera-
tures T ranging from ∼ 1, 200 to ∼ 15 K). As expected,
there is no nematicity in the undoped system. However,
it is clear that as hole doping increases and as the temper-
ature decreases then nematicity develops, with a larger
hole occupation of the p orbitals in the direction parallel
to the stripes. It can be argued that the nematicity is
merely the result of the breaking of the rotational invari-
ance due to the shape of the 16 × 4 clusters used here.
However, a non-neglibible nematic order parameter only
develops at low temperatures and under hole doping. To
further explore this issue we evaluated the nematicity in
a symmetric 8 × 8 cluster. Here, no nematicity was ob-
served in On, panel (b), but this could be due to the
coexistence of nematic regions with positive and nega-
tive values of On switching from one another during the
Monte Carlo time evolution, or simply a coherent quan-
tum mechanical superposition of both orientations.
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FIG. 4: (color online) Orbital nematic order parameter On =
〈ni,px − ni,py 〉 varying the doped number of holes at the βs
indicated in the inset, employing a spin-fermion model with
JAF=0.1 eV, JSp=1 eV, and JSd=3 eV. In panel (a) a 16× 4
cluster is used. Panel (b) is the same as (a) but employing
an 8 × 8 cluster. In (c) the nematicity is given by |O|n =
〈|ni,px−ni,py |〉 using a 16×4 cluster with the same parameters
as panel (a). Panel (d) is the same as (c) but in an 8 × 8
cluster. Panel (e) same as (a) but for the spin nematic order
parameter Sn = 〈Szi,d(Szi+x,d−Szi+y,d)〉. Panel (f) is the same
as (e) but using an 8× 8 cluster.

To explore this possibility we studied the modified or-

der parameter |O|n = 〈|ni,px−ni,py |〉. This order param-
eter does not change sign if the orientation of the stripes
switches from vertical to horizontal, but it becomes zero
if there are no stripes. In panel (c) of Fig. 4 |O|n is ploted
vs hole doping and at various temperatures for the 16×4
cluster. As expected its value decreases with tempera-
ture and at β = 400 and 800 eV−1 (temperatures T ∼ 30
and ∼ 15 K, respectively) the data for On in panel (a) are
qualitatively reproduced (although with different slopes).
The Monte Carlo results for |O|n in the 8× 8 cluster are
shown in panel (d) of the figure. It is remarkable to ob-
serve that the curves are very similar to those for the
16× 4 cluster in panel (c). This clearly supports the no-
tion that the absence of stripes on the 8×8 cluster is due
to a cancellation between both orientations, with each
one dominating in different regions of the system. Local
nematicity for the square lattice with periodic boundary
conditions in both directions is present even at the lowest
temperatures reached in our numerical simulations, but
combined with the results shown in panel (b) we can de-
duce that in about 50% of the sites ni,px > ni,py and vice
versa. Namely, there is an asymmetry between the x and
y directions. It is also clear that there is no nematicity
in the undoped system at low temperature, even using
rectangular clusters that in principle break the lattice
rotational invariance. However, the nematicity clearly
increases with hole doping.

Scanning tunneling microscopy (STM) experiments
have reported intracell nematicity in the p orbitals in
underdoped Bi2Sr2CaCu2O8+δ (Bi-2212) [41] and in the
overdoped regime of (Bi,Pb)2Sr2CuO6+δ (Bi-2201) [42].
The nematicity found was attributed to inequivalence in
the electronic structure at the two oxygen sites within
each unit cell, but the experiments could not disentan-
gle whether it was of charge or magnetic origin. Our
results indicate that the nematicity arises from a charge
difference among the intracell pσ orbitals.

In addition, the previously mentioned STM experi-
ments [41, 42] did not observe nematicity associated with
the d orbitals. However, the results of Resonant X-ray
Scattering in the stripe phase of (La,M)2CuO4 (M=Sr,
Ba, Eu, or Nd) [43] reported nematicity in the d or-
bitals. Our simulations indicate that the spin correla-
tions among the spin of the electrons in the p orbitals
are much smaller than those among the d electrons and
no magnetic nematicity in the p orbitals was observed.
However, we studied the charge correlations along the
x and y direction for the d orbital and its correspond-
ing spin-nematic order parameter Sn = 〈Szi,d(Szi+x,d −
Szi+y,d)〉. While no nematicity was observed in the
charge correlations we found that in the 16 × 4 cluster
the nearest-neighbor antiferromagnetic correlations are
stronger (weaker) in the direction parallel (perpendicu-
lar) to the stripes and the anisotropy increases when the
temperature decreases, as shown in Fig. 4 (e). The cor-
responding results in the 8× 8 cluster, panel (f), do not
display nematicity, but we believe that, as in the orbital
case, panel (b), this is merely due to the equal presence of
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FIG. 5: (color online) Orbital nematic order parameter On = 〈ni,px − ni,py 〉 vs temperature T for (a) 4 holes Nh = 4, (b)
6 holes Nh = 6, and (c) 8 holes Nh = 8. We also show the magnetic structure factor S(kmax) at the wavevector where it
is maximized vs temperature for (d) Nh = 4 and kmax = (7π/8, π), (e) Nh = 6 and kmax = (7π/8, π), and (f) Nh = 8 and
kmax = (3π/4, π). Similarly, we show an analogous analysis for the charge. Shown are the maximum value of the charge
structure factor N(kmax)−N(π/8, 0) vs temperature for (g) Nh = 4 and kmax = (π/4, 0), (h) Nh = 6 and kmax = (3π/8, 0),
and (i) Nh = 8 and kmax = (π/2, 0). The results are for the spin-fermion model with JAF=0.1 eV, JSp=1 eV, and JSd=3 eV
using a 16× 4 cluster.

coexisting regions with both orientations of the nematic-
ity. After all, if the charge patterns are an equal-weight
mixture of vertical and horizontal stripes, the same has
to occur for the spin textures.

We have also studied how the orbital nematicity and
the magnetic and charge incommensurability develop vs
temperature and doping. In the left column of Fig. 5
the orbital nematic order parameter On, panel (a), the
magnetic structure factor as its maximum value kmax =
(7π/8, π), panel (d), and the charge structure factor as
its maximum value kmax = (3π/4, 0) relative to its value
at k = (π/8, 0), panel (g), are presented for the case of
4 doped holes in the 16 × 4 cluster. The three order
parameters start developing at approximately the same
temperature between 200 K and 300 K. For 6 doped holes
the corresponding results appear in panels (b), (e), and
(h) of the same figure and it can be observed that the
three magnitudes start to increase at temperatures below
T ≈ 300 K. Finally, in panels (c), (f), and (i) the results
for Nh = 8 are presented. Now the temperature below
which the three order parameters start rising is lower
with T ≈ 200 K.

These results seem to indicate that magnetic and
charge incommensurability develop simultaneously with
the nematicity. Thus, no purely isolated nematic phase is
observed upon cooling. The presence of magnetic stripes
at high temperature as reported in quantum Monte Carlo

simulations of a three-band Hubbard model [28] is not
detected by our approach either. We indeed used the
approach in Ref. [28] to understand how the cluster ge-
ometry affects the formation of stripes. We meassured
the quantum spin-spin correlations for the d electrons
Sz(`, d) = 〈Szi,dSzi+`,d〉. in real space and in panel (a)
of Fig. 6 we display (−1)|`x+`y|Sz(`, d) in an 8 × 8 clus-
ter at β = 800 eV−1 (T ∼ 15 K) doped with 8 holes. A
structure consistent with coexisting vertical and horizon-
tal half-filled stripes as in Ref. [28] is observed: near the
origin of coordinates bottom left, the blue tone points
indicate a standard staggered spin pattern, while the red
tone points elsewhere indicate the presence of a π-shift
in the staggered pattern as it occurs in the presence of
stripes. However, we have only identified these structures
at low temperatures, corresponding to the temperatures
for which the stripes are well developed in the 16×4 clus-
ters. In addition, in panel (b) of the figure it can be seen
that the charge distribution is also consistent with the
coexistence of one horizontal and one vertical half-filled
stripe.

C. Total vs orbital doping

Finally, we want to address the issue of whether the
properties of the cuprates should be discussed in terms
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lx

ly
(a)

(b)

2FIG. 6: (color online) (a) The real-space spin correlation func-

tions (−1)|`x+`y|Sz(`, d) for the electrons in the d orbital us-
ing an 8 × 8 cluster with 8 doped holes at β = 800 eV−1

(T ∼ 15 K) and employing the spin-fermion model with
JAF=0.1 eV, JSp=1 eV, and JSd=3 eV. The blue tone points
near (0,0) bottom left, indicate a standard spin antiferromag-
netic pattern. The red tone points indicate a spin correlation
that has changed sign, namely the presence of a π-shift as
it occurs in the presence of stripes. (b) Snapshot of the fi-
nal configuration in a Monte Carlo run for the parameters
in (a) showing the charge distribution and the classical spins
projection in the x− z plane, as in Fig. 2.

of the total doping or instead focusing on the local nd and
np doping as proposed in Refs. [13, 14]. NMR meassure-
ments in different superconducting cuprates indicate that
the change in the electronic density in the d and p orbitals
as holes are added to the system is material dependent.
In the undoped case, with one hole per unit cell, the hole
would be expected to be located at the Cu’s so that the
density of holes in the d orbitals 〈nhd〉 = 1 while the den-
sity of holes in the p orbitals would be 〈nhpx〉 = 〈nhpy 〉 = 0.
However, experiments indicate that while the relation-
ship 〈nhd〉 + 〈nhpx〉 + 〈nhpy 〉 = 1 is satisfied, the holes are
distributed among the three orbitals in an hybridization
dependent way peculiar to each material with 〈nd〉 rang-
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FIG. 7: (color online) Density of holes in the d orbital vs the
total hole density in the p orbitals for the spin-fermion model
with JAF=0.1 eV, JSp=1 eV, and JSd=3 eV using 16× 4 and
8×8 clusters for the temperatures indicated in the caption and
for different hole densities, ranging from 0 holes (left) to 20
holes (right). The solid line indicates 〈nd〉+〈npx〉+〈npy 〉 = 1
satisfied by the undoped system. Experimental results for
hole doped La-214 (LSCO) (circles), Y-124 (diamonds) and
Y-123 (squares) (YBCO), and Hg- and Tl-based cuprates
(green symbols) (Hg-1201, Tl-2212, Tl-2223, Tl-2201) were
kindly provided by the authors of Ref. [13]. For reference,
β = 800 eV−1 means T ∼ 15 K, while β = 10 eV−1 means
T ∼ 1, 200 K.

ing from 0.82 for the case of La-214 (circles in Fig. 7) to
about 0.68 for Y-123 (squares in Fig. 7), and finally to
about 0.5 for Tl-2223 (green symbols in Fig. 7) [13, 14].

The results for 〈nhd〉 versus 〈nhpx〉+ 〈n
h
py 〉 meassured in

the spin-fermion model with the usual set of parameters
are also plotted in Fig. 7 for various values of the inverse
temperature β and in 16 × 4 and 8 × 8 clusters. Our
results indicate that the orbital distribution of holes has
a weak temperature dependence. We observed that the
hole distribution between d and p electrons reproduces
the experimental results for La-214 in the undoped case.
The experimentalists also observed that the rate at which
doped holes distribute among the d and p orbitals is ma-
terial dependent and it is given by the slope of the curves
shown in the figure. The slope that we observed is larger
than the one obtained experimentally for the Hg and
Tl compounds which, as shown in the figure, is slightly
higher than the results for La-214 [13, 14]. We believe
that a fine tuning of the parameters of the model may im-
prove quantitatively the agreement, but it is important
to notice that qualitatively the material dependent dis-
tribution of the doped holes among the different orbitals
in the unit cell is indeed captured by the spin-fermion
model. This result indicates that some properties of the
cuprates may be more dependent on the way in which
the holes are distributed among the Cu and O orbitals
than on the total density of doped holes.
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IV. CONCLUSIONS

In this publication, we present the results of Monte
Carlo studies of a phenomenological three-orbital CuO2

spin-fermion model that captures the charge-transfer
properties of the superconducting cuprates. The differ-
ences between a Mott and a charge transfer insulator are
relevant upon hole doping, the regime of main focus in
our present study. One of the most peculiar properties
of hole-doped cuprates is the formation of hole half-filled
stripes (one hole every two sites along the stripe) [15–
20, 44–47], as opposed to hole fully-filled stripes. This
is a behavior that is not reproduced in the single-orbital
Hubbard model [21] and it has only been observed in
three-orbital Hubbard models using DMRG techniques in
small clusters because of the numerical challenge repre-
sented by this formidable problem. Moreover, the Quan-
tum Monte Carlo studies of three-band Hubbard models
can only be performed at temperatures above 1000 K,
due to sign problems, where charge stripes do not exist.
Thus, it is important to find simpler alternatives that
capture the qualitative essence of the problem without
such computational complexity.

The present calculation obtains for the first time half-
filled charge stripes with unbiased numerical calculations
of a simple spin-fermion three-orbital charge-transfer sys-
tem. In general, it is difficult to study the stripes in
square clusters because during the Monte Carlo time
evolution both vertical and horizontal stripes develop
and the results represent averages in both directions.
However, in rectangular 16× 4 clusters the development
of half-filled stripes, accompanied by magnetic π-shifts
across the stripes is clear and properly captures the ex-
perimental results in the cuprates. In addition, we ob-
served orbital nematicity, due to an asymmetry in the
charge distribution between the px and py orbitals in
agreement with results from STM experiments [41, 42].
Focusing on the copper d-orbital the nematicity observed

with Resonant X-ray Scattering in the striped phase of
(La,M)2CuO4 [43] was also found in our analysis.

Using 8×8 clusters, and by focusing on the absolute
value of the nematic order parameter, we unveiled ten-
dencies towards half-filled stripes even in square clusters:
the average over long runs appears featureless but by
using absolute values it can be shown that there is ne-
maticity even in square clusters. One relatively minor
problem in our study is that we found difficult to ad-
dress the issue of whether the stripes are centered at the
d or the p orbitals because the excess holes do not form
sharp domains, as can be seen in Fig. 2, but instead they
have a finite width.

The correct magnetic properties are also captured by
the spin-fermion model that displays clear tendencies to-
wards long-range antiferromagnetic order in the undoped
case, and it also starts to develop incipient indications
of incommensurability along (π − δ, π) and (π, π − δ) in
the doped case. The coexistance of charge and mag-
netic order is material dependent in the cuprates and,
in the present model, it is possible that these feature
could be captured by modifications of the parameters in
the present model. In addition, these particular features
that develop upon hole doping, likely originate in stripes,
although they could also result from intertwinned orders,
and they appear to require rectangular clusters for their
proper stabilization. Future work will address even larger
lattices, a detailed temperature dependence, and the in-
fluence of quenched disorder on the appearance of stripes
in CuO2 spin-fermion models.
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