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The condensation of spin-orbit-induced excitons in t4
2g electronic systems is attracting considerable attention.

At large Hubbard U , antiferromagnetism was proposed to emerge from the Bose-Einstein Condensation (BEC)
of triplons (Jeff = 1). Here, we show that even at intermediate U regimes, the spin-orbit exciton condensation is
possible leading also to staggered magnetic order. The canonical electron-hole excitations (excitons) transform
into local triplon excitations at large U , and this BEC strong coupling regime is smoothly connected to the
intermediate U excitonic insulator region. We solved the degenerate three-orbital Hubbard model with spin-
orbit coupling (λ) in one dimension using the density matrix renormalization group, while in two dimensions
we use the Hartree-Fock approximation (HFA). Employing these techniques, we provide the full λ versus U
phase diagrams for both one- and two-dimensional lattices. Our main result is that at intermediate Hubbard U ,
increasing λ at fixed U the system transitions from an incommensurate spin-density-wave metal to a Bardeen-
Cooper-Schrieffer (BCS) excitonic insulator, with coherence length rcoh of O(a) and O(10a) in 1d and 2d ,
respectively, with a being the lattice spacing. Further increasing λ, the system eventually crosses over to the
BEC limit (with rcoh � a).

DOI: 10.1103/PhysRevB.101.245147

I. INTRODUCTION

The concept of excitonic condensation has attracted con-
siderable attention since its early theoretical prediction [1].
An exciton is a bound state of an electron-hole pair. This com-
posite particle resembles the Cooper pair of superconductors
and follows hard-core bosonic statistics. Early work involv-
ing semiconductors showed that in the weak-coupling limit
(small U ), near the semimetal to semiconductor transition, the
system can become unstable against the formation of multiple
excitons [2,3]. This can lead to a condensation into a BCS-like
macroscopic state called excitonic insulator. The associated
BCS wavefunction can smoothly transform into a BEC state
when the gap between bands increases at fixed Hubbard repul-
sion U . In strongly correlated systems, a BEC-like excitonic
insulator can also occur in the strong coupling limit (large U ).
This regime attracted theoretical investigations [4–6] and was
studied using large U perturbation theory, where the hopping
amplitude t is the small parameter.

The extended Falicov-Kimball model has often been used
as a minimal theoretical model to address excitonic conden-
sation [7–9]. Only recently, more realistic, and more difficult,
three-orbital Hubbard models were explored to study this state
[10–13]. On the experimental side there have been studies
showing reliable signatures of the excitonic condensate in real
materials, such as in transition metal dichalcogenides [14],
Ta2NiSe5 [15], and in bilayer systems [16,17]. To better un-

derstand excitonic insulators it is important to find additional
candidate materials and additional theoretical models where
this state occurs and can be studied in detail. Recently, it
was recognized that materials with strong spin-orbit coupling
provide a new avenue to realize this physics [18,19]. For
example, Sr2IrO4, with Ir4+ ions and filling n = 5 electrons
(t5

2g), is a celebrated material due to the presence of long-range
antiferromagnetic ordering in quasi-two-dimensional layers,
as in superconducting cuprates [20]. Recent resonant inelastic
x-ray scattering (RIXS) experiments on Sr2IrO4 have re-
ported excitons as an excitation at approximately 0.5–0.6 eV
[21–23]. RIXS experiments on one-dimensional stripes of
Sr2IrO4 also indicated excitons at nearly the same energy
[24]. These excitons are present in spin-orbit entangled states,
hence known as spin-orbit excitons.

Another promising avenue for excitonic condensates in-
duced by spin-orbit coupling involves the t4

2g case, which is the
focus of the present paper. Theoretically, it was predicted that
the three-orbital Hubbard model with a degenerate t2g space
and in the LS coupling limit (U � t, λ) leads to the BEC state
of triplons (singlet-triplet excitations) [25–27]. We will show
that these triplon excitations are low-energy manifestations of
spin-orbit excitons. Dynamical Mean Field Theory (DMFT)
calculations also supported similar findings [10,11], although
it is difficult to distinguish between BCS and BEC states using
this technique. A recent computational study of the ground
state of a one-dimensional spin-orbit coupled three-orbital
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Hubbard model—in a nondegenerate (tetragonal) t2g space
using the numerically-exact density matrix renormalization
group (DMRG)—also reported a phase with staggered spin-
orbit excitonic correlations [12]. All the above mentioned
studies revealed an antiferromagnetic ordering accompanying
the excitonic condensate. The t4

2g case is relevant for materials

with Ir5+ ions and other 4d/5d transition metal oxides with
the same doping n = 4. The presence of triplon condensation
was initially discussed for double perovskite materials, such
as Sr2YIrO6 and Ba2YIrO6 with a 5d4 configuration [28–33],
but RIXS experiments showed that the triplon excitations
bandwidth is not sufficiently large compared to λ to develop
condensation [34]. Note that recent RIXS experiments on
Ca2RuO4 suggests that this could be a candidate material
for excitonic magnetism [35], and ab initio calculations have
reached the same conclusion [36].

To investigate the spin-orbit excitonic condensation, in
this paper, we use a simple degenerate three-orbital Hubbard
model. Using numerically exact DMRG simulations on one-
dimensional chains, we show that an excitonic condensa-
tion is induced accompanied by antiferromagnetic ordering
even in the intermediate Hubbard regime (U/W ≈ 1). This
regime is stabilized by increasing sufficiently λ starting at
the λ = 0 incommensurate spin-density wave metallic phase.
These results cannot be understood using large U perturbation
theories. Moreover, by using the Hartree-Fock approximation
(HFA) in two-dimensional (2d) lattices, we also found a sim-
ilar excitonic insulator phase, both in the weak and interme-
diate U/W regimes. As our main result, we show that there is
a BCS-BEC crossover inside the excitonic condensate phase,
both in 1d and 2d lattices. The BCS limit of the excitonic
insulator occurs at intermediate U/W (and also for weak U/W
in 2d), and by increasing λ (at fixed U/W ) the BEC state is
reached. The previously known large U/W BEC state, due
to triplon condensation, appears smoothly connected to the
BCS excitonic insulator of intermediate U . We also provide
the full λ vs U phase diagrams for 1d and 2d lattices using
the many-body techniques discussed above.

The organization of this paper is as follows. In Sec. II,
the model and the computational methodology used are pre-
sented. In Secs. III and IV, the main results are shown. In
particular, in Sec. III, the results on 1d lattices using the
DMRG technique are presented. In Sec. IV, the results on
2d lattices using HFA further support our main proposal of
a BCS-BEC crossover in the model studied. In Sec. V, we
discuss the overall results and present our conclusions.

II. MODEL AND METHOD

For our study, we use a degenerate three-orbital Hubbard
model. The Hamiltonian has three primary terms: the tight-
binding kinetic energy, the standard on-site multiorbital Hub-
bard interaction, and the on-site spin-orbit coupling (SOC):
H = HK + Hint + HSOC. The tight-binding term is

HK =
∑

〈i, j〉,σ,γ ,γ ′
tγ γ ′ (c†

iσγ c jσγ ′ + H.c.). (1)

The hopping amplitudes tγ γ ′ connect only nearest-neighbor
lattice sites (in both the 1d chain and 2d square lattices). As

discussed earlier, here we use degenerate orbitals, i.e., tγ γ ′ =
δγ γ ′t . We fixed t = 0.5 and all of our results are presented in
terms of dimensionless ratios, such as U/W and λ/W . The
total bandwidth is W = 4.0|t | and 8.0|t | for the 1d and 2d
lattices, respectively. The orbitals used—labeled as 0, 1, and
2—could be associated respectively to the dyz, dxz, and dxy

orbitals, namely the t2g sector. In real materials, the above
hoppings can be much more complex [37], but nonetheless
this simple model is useful to gain conceptual understanding.
The on-site multiorbital Hubbard interaction term consists of
the standard several components

Hint = U
∑
i,γ

ni↑γ ni↓γ + (U ′ − JH/2)
∑

i,γ<γ ′
niγ niγ ′

− 2JH

∑
i,γ<γ ′

Siγ · Siγ ′ + JH

∑
i,γ<γ ′

(P†
iγ Piγ ′ + H.c.). (2)

Siγ = 1
2

∑
α,β c†

iαγ σαβciβγ represents the spin at orbital γ and
lattice site i, while niγ is the electronic density operator
also at orbital γ and site i. The first two terms are the
intra- and interorbital electronic repulsion, respectively. The
Hund coupling is the third term, favoring the spins ferro-
magnetic alignment at different orbitals and the same site.
Finally, the Piγ = ci↓γ ci↑γ operator in the fourth term (pair
hopping) is the pair annihilation operator arising from the
matrix elements of the “1/r” Coulomb repulsion as in the
early studies of Kanamori. We used the standard relation U ′ =
U − 2JH due to rotational invariance, and we fix JH = U/4
for all the calculations as employed widely in previous efforts
[12,13,38–40].

The SOC term is

HSOC = λ
∑

i,γ ,γ ′,σ,σ ′
〈γ |Li|γ ′〉 · 〈σ |Si|σ ′〉c†

iσγ ciσ ′γ ′ , (3)

where the coupling λ is the SOC strength.
Using the model described above, we performed calcu-

lations on one-dimensional chains employing the DMRG
[41,42] for various system lengths L = 16, 24, and 32 sites. We
kept up to 1600 states for the DMRG process and maintained
a truncation error below 10−8 throughout the finite algorithm
sweeps. We used the corrected single-site DMRG algorithm
[43] with correction a = 0.001–0.008, and performed 35 to
40 finite sweeps to gain proper convergence depending on
the system size. After this convergence, we calculated the
spin-structure factor S(q), orbital-structure factor L(q), exci-
tonic momentum distribution function �m=1/2(q), and coher-
ence length rcoh. From all these observables, we constructed
the phase diagram. To calculate spectral functions with the
DMRG, we used the correction vector method [44], with the
Krylov-space approach [45]. We obtain the single-particle
spectral function A(q, ω) and the excitonic pair-pair suscepti-
bility �m=1/2(q, ω). These frequency-dependent observables
require considerable computational time, and multiple com-
pute nodes. In our DMRG, we target the total Jz

eff of the
system to reduce the computational cost [12]. Details of the
Hartree-Fock calculations are in Ref. [46].
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(a) (c)

(b)

FIG. 1. Visual representation of our main results, all supported by actual DMRG and Hartree Fock calculations. In (a), the single-particle
excitations of the jeff = 3/2 and jeff = 1/2 bands are shown at intermediate U , where near the chemical potential a gap opens due to the
formation of excitons (note electron and hole have the same m). The jeff = 3/2 and jeff = 1/2 bands open gaps near momentum q ≈ 0 and
q ≈ π , respectively. In (b), the real-space perspective of the excitonic state (at intermediate U ) is shown, where the exciton’s mean radius
(characterized by the coherence length) decreases by increasing λ. In (c), the excitonic condensation in strong coupling is depicted. The local
exciton creation operator leads to the creation of both a triplon and a quintuplon when acting on |Jeff = 0〉. Including kinetic energy, i.e., the
tight-binding term, the triplon and quintuplon excitations gain bandwidths, and decreasing λ leads to the BEC of the triplon component.

III. DMRG RESULTS IN ONE DIMENSION

Consider first the DMRG numerical results for one-
dimensional chains. Figure 1 visually summarizes our con-
clusions. Within our numerical accuracy, we observed that the
excitonic condensation starts at intermediate Hubbard U ≈
O(W ). This exciton condensation opens a gap in the jeff =
3/2 and jeff = 1/2 bands at momentum q = 0 and q = π ,
respectively, see Fig. 1(a). A similar perspective for the gap
opening near the Fermi level was discussed in early research
for semimetals [1]. At intermediate U , we noticed the excitons
condense at finite momentum π and in the triplet channel (see
Ref. [46]). We also noticed that increasing λ decreases the
coherence length (rcoh) of electron-hole pairs from approx-
imately one lattice spacing (a) to a much smaller number
rcoh � a, resembling the BCS-BEC crossover. Although at
extreme BCS rcoh can be as large as hundreds of lattice spac-
ings, in our finite and one-dimensional system, we only found
a robust indication for a maximum rcoh of approximately
1.0a which definitely is different from the atomic BEC limit.
Confirming that indeed we found a BCS-BEC crossover at
intermediate U , we performed mean-field calculations on 2d
lattices (Sec. IV), where we found rcoh as large as O(10a) in
the BCS limit.

We also found clear differences between the momentum
distribution functions of the local excitations in the BCS

and BEC limits in one dimension. The excitonic opera-
tor �

†3/2,m′
1/2,m = a†

1/2,ma3/2,m′ in the single-atom LS coupling
limit can be written using triplon and quintuplon excita-
tions (see Supplementary [46]), corresponding, respectively,
to T†

n|Jz
eff = 0, Jeff = 0〉 = |n, 1〉, and Q†

l |Jz
eff = 0, Jeff = 0〉 =

|l, 2〉, where n ∈ {±1, 0} and l ∈ {±2,±1, 0}. Calculating
the pair-pair susceptibility of excitons �(q, ω) for chains, in
the strong-coupling nonmagnetic phase, we found bands of
triplon and quintuplon excitations, with minima at q = π but
both bands are gapped. Decreasing λ drives the system to the
BEC state, where �(q, ω) has gapped triplon and quintuplon
excitations only near q = 0 but mainly a continuum of ex-
citations at other momenta above the Goldstone-like modes
emerging from q = π , as sketched in Fig. 1(c).

A. Magnetic properties and staggered excitonic correlations

Now consider the results for magnetism in one-
dimensional chains. We choose U/W = 2.0 and 10.0 as rep-
resentative points for the intermediate and strong coupling
regions, respectively. First, consider the intermediate coupling
region where at λ = 0 we found an incommensurate spin-
density wave (IC-SDW) via the spin-spin correlation 〈Si ·
Si′ 〉 together with an exponential fast decay in the orbital-
orbital correlation 〈Li · Li′ 〉, as shown in Figs. 2(a,c). Block
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(a)

(b)

(c)

(d)

(e) (f)

FIG. 2. DMRG results at U/W = 2. (a) and (b) show the real-space spin-spin correlations at λ/W = 0 and λ/W = 0.29, repectively. In
(c) and (d), the real-space orbital-orbital correlations are shown at λ/W = 0.0 and λ/W = 0.29, respectively. The spin structure factor S(q)
and orbital structure factors L(q) are in (e) and (f), respectively, for various λs. In (a)–(d), the system size was L = 32 and one site is fixed at
the center, i.e., i′ = 15. A system size L = 16 is used for (e,f).

magnetic states as in previous DMRG studies [12,38–40], do
not appear in our model at λ = 0. Increasing λ drives the
system towards antiferromagnetism with staggered spin-spin
and orbital-orbital correlations, see Figs. 2(b) and 2(d). For
additional confirmation, we show the spin structure factor
S(q) = (1/L)

∑
j,m eιq( j−m)〈S j · Sm〉, and the orbital structure

factor L(q) = (1/L)
∑

j,m eιq( j−m)〈L j · Lm〉 for various λ val-
ues. As λ increases, the incommensurate peak in S(q) in
Fig. 2(e) shifts to lower q values. The antiferromagnetic
tendencies, shown by the q = π peak, starts only near λ =
0.22W , and on further increasing λ the q = π peak grows
and the incommensurate peak is reduced. At larger λ’s, the
S(q = π ) peak decreases as the system transitions into the
nonmagnetic state. The orbital structure factor L(q) displays
similar behavior at q = π . L(q) starts with a flat plateaux
near q = π , then grows when increasing λ, and eventually the
L(q = π ) peak vanishes for very large λ, see Fig. 2(f).

In strong coupling and at λ = 0, the spins align ferro-
magnetically and orbital-orbital correlations show a “+ −
− + −−” pattern, with peaks at momentum q = 0 and near
q = 2π/3 in S(q) and L(q), respectively (Fig. 3). Recent
DMRG calculations on the low-energy S = 1 and L = 1
model showed similar results in the orbital correlations [47] at
λ = 0. As λ increases, the system enters into the phase where
orbital ordering becomes staggered, as shown by a peak at q =
π for λ = 0.05W in Fig. 3(a). However, the spin ordering is
dominantly ferromagnetic with secondary antiferromagnetic
tendencies leading to a small peak at q = π [Fig. 3(b) for λ =
0.05W ]. Further increasing λ, both L(q = π ) and S(q = π )
grow while S(q = 0) decreases, and ultimately L(q = π ) and
S(q = π ) also start decreasing when the system enters into

the nonmagnetic phase with exponentially decaying spin and
orbital correlations.

In our DMRG calculations, the development of antifer-
romagnetic correlations in the spin and orbital channels is
always accompanied by staggering in the exciton-exciton
correlations, both at intermediate and strong coupling. We
estimate the amount of staggering in excitonic correlation for
our chains using:

�m = 1

L2

∑
|i−i′ |>0

(−1)|i−i′ |〈�†3/2,m
1/2,m (i)�3/2,m

1/2,m(i′)
〉
, (4)

where m ∈ {±1/2}. In Fig. 3(c), the evolution of �1/2 is
shown when changing λ, where each panel belongs to a
different U/W . We found that smaller λ’s are needed as U/W
increases to obtain staggered excitonic correlations. A finite
range of λ where the excitonic correlations are staggered is
present for U/W as low as 1.5, although the magnitude of
�1/2 decreases as U/W decreases, and for U/W � 1.0, we
were unable to identify—within our numerical accuracy—the
region with staggered excitonic correlations. Nonetheless, it
is interesting that we find staggered excitonic correlations at
intermediate U , where small λ shows IC-SDW metal (for
evidence of metallicity see Sec. III C). Perturbation theories
at U � t, λ cannot explain these results.

B. BCS-BEC crossover and IC-SDW metal to
BCS-Excitonic insulator transition

Now we will discuss the main result of this paper, where we
present the numerical evidence for the BCS-BEC crossover
in the excitonic condensate. At intermediate U/W —the value
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(a) (b)

(c)

FIG. 3. Results calculated using DMRG for a one-dimensional
chain of L = 16 sites. In (a) and (b), the orbital structure factor L(q)
and spin structure factor S(q) are shown, respectively, at U/W = 10
and various λ/W ’s. (c) shows the measure of staggering in excitonic
correlations �1/2 for various values of λ and U .

U/W = 1.75 is chosen merely for simplicity—there is a finite
range of λ/W ∈ {0.28, 0.4} where staggering in excitonic,
spin, and orbital correlations is present. We calculate the
coherence length rcoh(m) using the widely employed formula
[4,48,49]

rcoh(m) =

√√√√√
∑

i j |i − j|2〈a†
i 1

2
m
2

a j 3
2

m
2

〉
∑

i j

〈
a†

i 1
2

m
2

a j 3
2

m
2

〉 , (5)

where m ∈ {±1/2}, for the points lying inside the exci-
tonic condensate region at fixed U/W = 1.75, namely, the
Path-1 shown in Fig. 6. Note that rcoh(1/2) = rcoh(−1/2).
Interestingly, we found that as λ increases, rcoh decreases
from nearly one lattice spacing ≈ a to ≈0.2a, see Fig. 4(c).
This reduction in the coherence length of electron-hole
pairs resembles the BCS-BEC crossover already discussed
in semiconductors near the semi-metal to semiconductor
transition [1–3]. We also calculate rcoh for various values
of λ and U when transitioning from the intermediate to
the strong coupling limits, while being still inside the ex-
citonic condensate, which we call Path-2 (see Fig. 6), as
shown in Fig. 4(d). Here again we found that rcoh de-
creases from O(a) to O(0.1a). The ordered (λ/W,U/W )
points choosen for Path-2 are {(0.3, 1.75), (0.29,2.0),
(0.29, 2.25), (0.287,2.3), (0.285,2.35), (0.283,2.4), (0.28,2.5),

(a) (b)

(d)

(c)

(f)(e)

FIG. 4. (a) and (b) show the momentum distribution function of
excitons �(q) for system sizes L = 16, 24, and 32 at two repre-
sentative points of the BCS and BEC regions, respectively. (c) and
(d) show the coherence length for two paths inside the excitonic
condensate regime, shown in the phase diagram Fig. 6. The pair-pair
susceptibilities �(q, ω) are in (e) at U/W = 10 and λ/W = 0.2 i.e.
in the nonmagnetic insulator (NMI) region, and in (f) at U/W = 10
and λ/W = 0.11, i.e., in the BEC region. All the calculations used
DMRG.

(0.279,2.525), (0.277,2.55), (0.275,2.6), (0.27,2.65), (0.25,
2.8), (0.24, 3.0), (0.23, 3.5), (0.21, 4.0), (0.2,4.5), (0.17,

6.0), (0.15,7.0), (0.13,9.0), (0.11, 10.0)}. Note that for
U/W � 2.75, the coherence length is small as expected be-
cause at these values of U , the system is already in strong
coupling for λ = 0.

In Figs. 4(a) and 4(b), we show the exci-
tonic momentum distribution function �(q) =
(1/L)

∑
i, j〈eιq(i− j)�

†3/2,m
1/2,m (i)�3/2,m

1/2,m( j)〉 for two points
(λ/W = 0.3, U/W = 1.75) and (λ/W = 0.15, U/W = 7.0),
at the intermediate U BCS and strong U BEC regions. In
the BCS limit, �(q = π ) grows very slightly with system
size L. However, in the BEC region we found nearly linearly
increasing �(q = π ) with L, implying either a very slow
power-law decay or even true long-range order. Such a true
long-range order in our one dimension is allowed as the U(1)
symmetry related to the excitonic condensation is explicitly
broken by a finite Hund coupling [13]. The analysis above
also clearly implies that as we increase the system size
and hence increase the number of excitons, these excitons
can condense also at momentum q �= π in the BCS limit,
whereas in the BEC limit excitons condense only at q = π .
For completeness, note that a similar BCS-BEC crossover has
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(a)

(b) (c)

(d) (f)

(e)

FIG. 5. The single-particle spectral function calculated using DMRG. The noninteracting band structure is shown in (a). (b) contains
Ajm(q, ω) for λ = 0 and U/W = 2.0, in the IC-SDW metallic phase. In (d) and (e), Ajm(q, ω) at λ/W = 0.29 and U/W = 2.0 is shown inside
the excitonic insulator phase (rcoh = 1.019). (c) and (f) show the single-particle DOS [ρ jm(ω)] at λ = 0.0 and 0.29, respectively. The scaling
of the charge gap is in inset (g) for (U/W = 2, λ/W = 0) and (U/W = 2, λ/W = 0.29).

also been reported in the extended Falicov-Kimball model in
one-dimensional chains [7].

As discussed before, the exciton creation (i.e., electron-
hole pair excitation) becomes the triplon and quintuplon ex-
citation in the atomic LS limit. We calculated the excitonic
pair-pair susceptibility

�(q, ω) = 〈0|�†3/2,1/2
1/2,1/2 (q)

1

ω + iη − H + E0
�

3/2,1/2
1/2,1/2(q)|0〉

(6)

at large U/W = 10.0 on one-dimensional chains to study the
effect of the kinetic energy. The broadening η was 0.05eV. We
choose two values λ/W = 0.20 and λ/W = 0.11 in the non-
magnetic insulator and BEC regions, respectively [Figs. 4(e)
and 4(f)]. For the nonmagnetic state, we found the pair-pair
susceptibility shows two cosine-like bands with minima at
q = π , where the lower band belongs to �Jeff = 1 (triplon)
and the upper band represent �Jeff = 2 excitations, as in pre-
vious analytical studies [27]. The BEC is expected to occur by
reducing λ, when the lower band of triplons becomes gapless.
In our BEC state, �(q, ω) shows features very different from
those in the nonmagnetic state: after removing the elastic peak
we found that two gapped bands appear only near q = 0,
and the spectrum at q = π is now gapless with emerging
Goldstone-like modes. We also found continuum-like features
for q ∈ {−π

4 , 7π
4 }.

In the noninteracting limit, λ only splits the jeff = 3/2
and jeff = 1/2 bands, see Fig. 5(a), driving a metal to

band-insulator transition. Only at finite U the excitonic con-
densation happens: as shown in our DMRG results, U/W �
1.0 is required to obtain a noticeable staggering in the ex-
citonic correlations. To further investigate the intermediate
U region, we calculated the single-particle spectral function
Ajm(q, ω) (see Ref. [46]) at U/W = 2, using both λ = 0.0 and
λ/W = 0.29 corresponding to the IC-SDW and excitonic con-
densate with rcoh ≈ 1.0 (BCS limit), respectively. In Fig. 5(b),
we show Ajm(q, ω − μ) for λ = 0: at this point all ( jeff, m)
states are degenerate. Comparing to the noninteracting limit
band structure, a renormalization of the bands is clearly
visible, having two minima structure and a local maxima at
q = π , as a consequence of the Hubbard repulsion. In this
phase, the nesting vector at the chemical potential μ decides
the ordering vector of the incommensurate spin-density wave.
We also show the single-particle density of states ρ jm(ω − μ),
Fig. 5(c), which indicates that the system has a finite density
of states at μ suggesting this phase is metallic.

Figures 5(d) and 5(e) show Aj,m(q, ω − μ) for jeff = 3/2
(all m ∈ {±3/2,±1/2} are degenerate) and jeff = 1/2 (both
m ∈ {±1/2} are degenerate), respectively. The gaps at μ, at
wavevectors q ≈ 0 and q ≈ π in the spectral functions of
jeff = 3/2 and jeff = 1/2, respectively, are clearly present.
These gaps appear due to the formation of bound states of
electrons and holes, arising from the q ≈ 0 and q ≈ π states
of the jeff = 3/2 and jeff = 1/2 bands, respectively. This
leads to excitons creation with net momentum ≈ π (indirect
excitons). We also noticed a nontrivial suppression of the
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FIG. 6. λ/W vs U/W phase diagram calculated using DMRG
for a one-dimensional system. The two red arrows corresponds to
the paths used in (c) and (d) of Fig. 4. The vertical red arrow is
chosen at U/W = 1.75, and depicts Path-1 of Fig. 4(c). The diagonal
red arrow corresponds to the Path-2 used in Fig. 4(d). The notation
RBI, IC-SDW, FM, IOO, EC, AFM, and NMI stands for relativistic
band insulator, incommensurate spin-density wave, ferromagnetic,
excitonic condensate, antiferromagnetic, and nonmagnetic insulator,
respectively.

spectral function near q = π for jeff = 3/2, below μ, but the
explanation for these small features requires further work.
However, it is evident that the gap opens due to the formation
of indirect excitons and eventually leads to a BCS-like state. In
Fig. 5(f), the j-resolved density-of-states is shown to illustrate
the suppression near μ for both the jeff = 3/2 and 1/2 bands.
A small but finite density-of-states at μ is present because
of the broadening η used. To confirm the transition from
metal (at λ = 0) to excitonic insulator (at λ/W = 0.29), we
performed finite-size scaling of the charge gap �c = EG(N +
1) + EG(N − 1) − 2EG(N ) for both points, see Fig. 5(g). At
λ = 0.29, using system sizes L = 8, 12, 16, 24, 32, and
42, we found the charge gap is quite robust 0.55 eV. Sizes
L = 8, 16, 20, 28, 32, and 40 were used for the scaling
at λ = 0, which indicates that �c scales to ≈0 eV in the
thermodynamic limit.

Figure 6 ends this section by displaying the full λ vs U
phase diagram for our one-dimensional systems. The CPU-
costly DMRG calculations were performed for all small
circles shown using a system size L = 16. After obtaining
the ground state, then spin-spin correlations, orbital-orbital
correlations, and exciton-exciton correlations were calcu-
lated to analyze the properties of each phase. The ( jeff, m)-
resolved local electronic densities were also studied to iden-
tify the relativistic band insulator phase. The dashed line
inside the excitonic condensate region (green region) is a
guide to the eyes to show the BCS and BEC limits of the
excitonic condensate.

IV. HARTREE-FOCK RESULTS IN TWO-DIMENSIONS

In this section, we will present and discuss the results
obtained in two-dimensional lattices by performing mean-
field calculations in real-space. Hartree-Fock approximations
are appropriate to study excitonic condensates as shown
in the original publications that started this field [1], as

(a)

(b)

(d)

(e)

(c)

FIG. 7. (a) shows the λ vs U phase diagram for the square lattice,
calculated using the Hartree-Fock approximation. In (b) and (c),
the momentum distribution function of excitons �(q) is shown at
λ = 0.53 and λ/W = 0.592, respectively, for fixed U/W = 0.5 and
a 24 × 24 system. The coherence length for various values of λ,
at fixed U/W = 0.5, for system sizes 8 × 8, 16 × 16, and 24 × 24
are in (d). The N (π, π ), S(π, π ), and L(π, π ) are in (e) for various
values of λ, at fixed U/W = 0.5 and using a 24 × 24 cluster.

well as in recent numerical calculations on Falicov-Kimball
models [8,50].

In Fig. 7(a), we show the full λ versus U phase diagram for
the two-dimensional lattice. To identify the various phases, we
calculated the spin structure factor and orbital structure factor
on 16 × 16 clusters with periodic boundary conditions for all
the points explicitly shown in the phase diagram. Our mean-
field calculations in two dimensions capture almost all the
phases found in our numerical exact one-dimensional results,
the main difference being having shifted boundaries, to be ex-
pected considering the different dimensionality and different
many-body approximations. The only important difference is
that our mean-field calculations do not capture the nonmag-
netic phase in strong coupling, because the lattice nonmag-
netic state can be written as a direct product of Jeff = 0 at each
site, i.e., |Jeff=0〉i ⊗ |Jeff=0〉i+1 ⊗ |Jeff=0〉i+2 . . . , where each
Jeff = 0 state in the LS coupling limit is a sum of Slater deter-
minants. However, the excitonic condensate phase, the focus
of the present paper, is properly captured by Hartree-Fock and
it is present even in a larger region of the phase diagram than
in one dimension, hence giving us a good opportunity to dis-
cuss the BCS-BEC crossover in two-dimensional lattices. We
confirmed that increasing λ the system transits from IC-SDW
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metal to excitonic insulator at intermediate U , by calculating
single particle density-of-states (see Ref. [46]). It must be
noted that excitonic magnet, at large U , found in Hartree-Fock
calculations cannot be described by condensation of triplons.
In the intermediate U region, the band insulator is present
at large λ with excitons as local objects and the band gap is
larger than the binding energy of excitons. As λ decreases,
the excitonic magnet emerges due to the condensation of
these conventional excitons. The above described scenario can
be captured in mean-field theory calculations leading to the
exctionic condensate state, as discussed earlier [1].

To proceed with our discussion, we fix U/W = 0.5 (W =
8t) where the excitonic condensation is present in a narrow
but finite range of spin-orbit coupling, while for smaller λ’s
the IC-SDW phase is present. Similar to our one-dimensional
DMRG calculations, in two dimensions we found that inside
the excitonic condensate region (at a fixed weak or inter-
mediate U/W values), rcoh decreases on increasing λ, as
shown in Fig. 7(d) depicting the BCS-BEC crossover. We have
calculated rcoh for system sizes 8 × 8, 16 × 16, and 24 × 24.
We found that in the BCS limit, rcoh increases as the system
size increases and rcoh can reach values as high as ≈15.0a
for the 24 × 24 lattice. This clearly supports our claim for the
presence of the BCS state above the IC-SDW region, as in our
DMRG chain calculations.

On the other hand, in the BEC limit, below the relativis-
tic band insulator in the phase diagram, rcoh is O(0.1a),
as shown in Fig. 7(d). Figure 7(e) displays S(π, π ) and
L(π, π ), for U/W = 0.5, showing that only for a finite range
of λ the antiferromagnetic ordering develops. We also show
the momentum distribution function of excitons �1/2(q) at
λ/W = 0.53 and λ/W = 0.592 in the BCS and BEC lim-
its, respectively. In the BEC limit, �(q) is much sharper
near q = (π, π ) than in the BCS limit, as expected be-
cause in BEC a larger ratio of excitons is expected at the
condensation momentum than other momenta. To further
investigate the above claim we calculated the ratio of ex-
citons at wave vector q = (π, π ) and at other wave vec-
tors using N (π, π ) = �1/2(π, π )/〈�1/2(q �= (π, π ))〉, where
〈�1/2(q �= (π, π ))〉 = 1

L2−1

∑
q �=(π,π ) �1/2(q). It is evident

from Fig. 7(e) that N (π, π ) increases as we transition from
the BCS to the BEC limits.

V. CONCLUSIONS

In this publication, we studied the degenerate (t2g)4 mul-
tiorbital Hubbard model in the presence of spin-orbit cou-
pling, using one-dimensional chains and numerically exact
DMRG and also using two-dimensional clusters within the
Hartree-Fock approximation. In both calculations, we provide
evidence for a BCS-BEC crossover in the spin-orbit excitonic
condensate, in the regime of robust Hund coupling fixed as
JH = U/4. Within our accuracy, we established that in this
model and at intermediate U/W , the system transits from
an IC-SDW metallic phase to the BCS limit of an antifer-
romagnetic excitonic condensate. Further increasing λ the
coherence length of electron-hole pairs decreases rapidly as
the system crossovers to the BEC regime. This BEC regime
ends as eventually the system transits to the relativistic band
insulator on increasing further λ. Our work provides the first
indications of a BCS-BEC crossover in the excitonic magnetic
state at intermediate U/W , a region of couplings that cannot
be explored within approximations developed in the large
U/W regime.

We hope our results encourage further theoretical and
experimental investigations on t4

2g compounds with robust
spin-orbit coupling. Although our study is performed using
degenerate orbitals, we believe that our findings could be
generic and relevant for materials showing magnetic excitonic
condensation at intermediate values of the Hubbard repulsion
and spin-orbit coupling.
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