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The magnetic and electronic phase diagram of a model for the quasi-one-dimensional alkali-metal iron
selenide compound Na2FeSe2 is presented. The novelty of this material is that the valence of iron is Fe2+,
contrary to most other iron-chain compounds with valence Fe3+. Using first-principles techniques, we developed
a three-orbital tight-binding model that reproduces the ab initio band structure near the Fermi level. Including
Hubbard and Hund couplings and studying the model via the density-matrix renormalization group and Lanczos
methods, we constructed the ground-state phase diagram. A robust region where the block state ↑↑↓↓↑↑↓↓
is stabilized was unveiled. The analog state in iron ladders, employing 2 × 2 ferromagnetic blocks, is by
now well established, but in chains a block magnetic order has not been observed yet in real materials. The
phase diagram also contains a large region of canonical staggered spin order ↑↓↑↓↑↓↑ at very large Hubbard
repulsion. At the block-to-staggered transition region, an exotic phase is stabilized with a mixture of both
states: an inhomogeneous orbital-selective charge density wave with the exotic spin configuration ↑↑↓↑↓↓↑↓.
Our predictions for Na2FeSe2 may guide crystal growers and neutron-scattering experimentalists towards the
realization of block states in one-dimensional iron selenide chain materials.
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I. INTRODUCTION

Iron-based pnictides and selenides are fascinating ma-
terials with exotic magnetic and superconducting proper-
ties [1–3]. For iron selenides the low-temperature insulating
ground state has robust local magnetic moments [4–6], high-
lighting the importance of Hubbard and Hund coupling inter-
actions among the electrons occupying the 3d orbitals [2,3].
The competition between charge, spin, lattice, and orbital
degrees of freedom can give rise to various types of ex-
otic magnetic and electronic ordering. In particular, recently
the two-leg ladder iron selenide materials have received
considerable attention. One reason is their similarity with
copper-based ladders, with a spin gap in the undoped limit and
superconductivity upon doping by high pressure [7,8]. More-
over, in the two-leg ladder iron-based compound BaFe2Se3,
an exotic block-antiferromagnetic (AFM) order (involving
2 × 2 ferromagnetically aligned blocks, coupled antiferro-
magnetically along the legs of the ladder) has been reported
using inelastic neutron-diffraction methods [9–13], confirm-
ing earlier predictions by theory [14,15]. BaFe2Se3 is an
insulator with robust Néel temperature TN ∼ 250 K into the
block phase and large individual magnetic moments ∼2.8μB.
In another iron-based ladder material, where K replaces Ba
leading to KFe2Se3, the magnetic moments align ferromag-

netically along the rungs but antiferromagnetically along the
legs forming 2 × 1 blocks [10].

In addition to these ladder materials, there are some exper-
imentally observed iron selenide compounds, such as TlFeS2,
TlFeSe2, and KFeSe2, which contain weakly coupled quasi-
one-dimensional chains [16,17]. In these compounds iron is
in a valence Fe3+, corresponding to n = 5 electrons in the
3d iron orbitals. Based on magnetic susceptibility, electric
resistivity, and electron-spin resonance, TlFeSe2 behaves as
a quasi-one-dimensional standard spin-staggered antiferro-
magnet [18]. Furthermore, neutron-diffraction experiments on
TlFeS2 also indicate [19] staggered spin order below TN =
196 K.

The experimental developments described above in quasi-
1D iron-based materials provides a playground for theoretical
many-body calculations based on the multiorbital Hubbard
model [20–24]. Using accurate numerical techniques for low-
dimensional systems, such as the density-matrix renormal-
ization group method (DMRG) [25,26], the high-pressure
superconducting two-leg ladder compound BaFe2S3 [27–29]
was explored with regards to magnetic and pairing properties
keeping two orbitals active [30,31]. Evidence for the correct
rung-FM and leg-AFM spin order was found over large por-
tions of interaction parameters [30]. Evidence of metalliza-
tion under high pressure was also reported [32,33]. This is
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considered a precursor of superconductivity, which was also
shown to appear in theoretical studies of two-orbital one-
dimensional models upon hole doping [20,21]. Even mul-
tiferroicity was unveiled in iron ladders [34], indicating an
unexpected rich behavior. Moreover, novel Te-based ladders
were predicted to display interesting magnetic properties as
well [35,36].

The phase diagram of a three-orbital Hubbard model for
chains was also studied using DMRG [14,15], unveiling var-
ious types of exotic magnetic and electronic phases. More
canonical ferromagnetic and staggered ↑↓↑↓ states were also
stabilized, varying the Hund and Hubbard interaction parame-
ters. The spin dynamical properties of exotic orbital-selective
Mott phases (displaying the selective localization of electrons
on a particular orbital) were also analyzed, revealing unusual
coexisting modes of spin excitations [23].

The magnetic phase diagram of the five-orbital Hubbard
model for iron selenide materials was initially studied using
real-space Hartree-Fock approximations for chains [37] and
ladders [38]. At electronic density n = 5, relevant to previ-
ously known chain compounds such as TlFeSe2, a simple
staggered AFM phase in a large parameter space of the phase
diagram was reported, in agreement with existing experi-
ments. Interestingly, a much richer phase diagram was the-
oretically predicted for chains with the electronic density n =
6. More reliable DMRG studies of the three-orbital Hubbard
model at n = 6 have also consistently reported a similar wide
variety of exotic phases for n = 6, including the block phase
↑↑↓↓ at robust Hund coupling [14], as well as generalizations
to longer blocks [22] and even spontaneously formed spiral
phases [39]. But thus far only two-leg ladder materials, such
as BaFe2Se3 and BaFe2S3, have been studied experimentally,
confirming the block nature of the spin state—either 2 × 2 or
2 × 1 blocks—as well as exotic superconductivity upon high
pressure. However, finding a truly n = 6 one-dimensional ver-
sion, with only chains instead of ladders, would add another
interesting member to the existing group of realizations of the
theory predictions, opening a novel avenue for research.

Recently, the possibility of preparing the alkali iron se-
lenide compound Na2FeSe2 has been discussed [40]. In
Na2FeSe2 the iron atom is in a valence state Fe2+, which
corresponds to an electronic density n = 6 for the 3d Fe
orbitals. As already discussed, Hartree-Fock studies of low-
dimensional multiorbital models with electronic density n = 6
displayed a much richer phase diagram with exotic phases as
compared to the canonical staggered order of the n = 5 case.
Motivated by recent experimental efforts [40], in this publica-
tion we study theoretically the magnetic and electronic prop-
erties of the chain compound Na2FeSe2. Using first-principles
calculations we obtain the relevant hopping amplitudes. Next,
using computationally accurate techniques such as DMRG
and Lanczos methods, we construct the ground-state phase
diagram by varying the on-site same-orbital Hubbard U repul-
sion and the on-site Hund coupling JH . At low values of JH/U ,
the staggered AFM order with wave vector π dominates in a
large portion of the phase diagram. However, upon increasing
JH/U into the realistic regime for iron-based compounds,
interesting block phases, particularly ↑↑↓↓, dominate in a
large region of parameter space. In contrast to Hartree-Fock
methods, DMRG and Lanczos take into account quantum fluc-
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FIG. 1. (a) Crystal structure of Na2FeSe2, the material that we
predict should present exotic magnetic order. (b) Side view of a
single Fe chain and the nearest-neighbor t and next-nearest-neighbor
t ′ hopping amplitudes used in our study. The dashed line indicates
the primitive unit cell used in DFT calculations.

tuations, rendering the results more reliable. Finally, albeit in a
narrow region of parameter space, a novel phase ↑↑↓↑↓↓↑↓
was also found with a mixture of properties of the dominant
block and staggered states.

The organization of the paper is as follows. In Sec. II,
details of the ab initio calculations are described. Section III
contains the three-orbital Hubbard model and details of the
numerical methods. Section IV presents the DMRG and Lanc-
zos predictions, where first we focus on the results at the
realistic Hund coupling JH/U = 1/4, and later an extended
phase diagram of the model is provided. Finally, conclusions
are provided in Sec. V.

II. AB INITIO CALCULATIONS

The crystal structure of Na2FeSe2 is shown in Fig. 1.
The most prominent feature is that edge-sharing FeSe2 tetra-
hedral forming one-dimensional chains running along the c
axis. Here, first-principles density functional theory (DFT)
calculations are used, employing the lattice constants a, b,
and c, and the atomic positions of the Na, Fe, and Se atoms
as reported in Ref. [40]. These lattice constants are a =
6.608 Å, b = 11.903 Å, and c = 5.856 Å. The space group is
Ibam (no. 72), and the atomic positions of Na(8 j), Fe(4a),
and Se(8 j) are (0.1562, 0.35565, 0.0), (0.0, 0.0,0.25), and
(0.21638, 0.11435, 0.0), respectively. The band structure and
the projected density of states for the 3d orbitals are presented
in Figs. 2(a) and 2(b). The orbital dx2−y2 contributes primarily
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FIG. 2. (a) Band structure and (b) projected density of states of
the Na2FeSe2 single-chain compound obtained using DFT calcu-
lations. (c) Tight-binding (TB) band structure in the folded zone.
(d) Tight-binding unfolded (TB-unfold) band structure used in the
DMRG calculations. Parts of the original folded bands are marked
with blue dashed lines. The zero in the vertical energy axis is the
position of the Fermi level.

near the Fermi level. The contribution of the orbitals dxz and
dyz is subdominant but not negligible.

Considering the one-dimensional character of the atomic
structure, all interchain electron hopping amplitudes are ne-
glected and we only focus on the intrachain hoppings. In other
words, only a Na2FeSe2 single chain [shown in Fig. 1(b)] is
considered in the DFT procedure. The calculations were per-
formed using the generalized gradient approximation [41] and
the projector augmented wave (PAW) pseudopotentials [42],
implemented in the Vienna ab initio Simulation Package
(VASP) code [43,44]. Since the magnetic properties will be
considered via many-body calculations, magnetism was not
included in the derivation of the bands and hopping ampli-
tudes from first principles. Following a self-consistent calcu-
lation with total energy convergence of order 10−5 eV, the
maximally localized Wannier functions [45] were constructed
using the WANNIER90 code [46] from the ab initio ground-state
wave function.

We constructed three Wannier functions involving the or-
bital basis dxz, dyz, dx2−y2 for each iron and deduced the hop-
ping parameters, readjusted to properly fit the band structure
after reducing the original five orbitals to three (see Sec. III
for details). The corresponding band structure using these
hoppings is displayed in Fig. 2(c), which agrees well with
the DFT band structure. Note that there are two Fe atoms
in the primitive unit cell in the DFT calculation because of
the alternating positions of the Na and Se atoms, leading to
a unit cell of 2d length, where d is the distance between
two nearest-neighbor iron atoms [see Fig. 1(b)]. Therefore the
corresponding band structure can be described as a six-band

model, i.e., three orbitals for two iron atoms in the primitive
unit cell. Since we focus only on the iron atoms (as discussed
previously for other iron-based compounds in Refs. [47,48]),
we can exclude the Na and Se atoms, which further simplifies
the primitive unit cell. By including only one iron atom in
the primitive unit cell, the lattice constant of the new unit
cell is called d . In other words, by introducing a local gauge
transformation for one of the two orbitals to change its sign,
we can expand the band dispersion from �-Z to �-Z′, as
shown in Fig. 2(d). As a result, the band structure can be
unfolded and simplified to a three-band model that was used
in the DMRG calculations.

III. MODEL AND METHOD

The Hamiltonian for the one-dimensional chain of
Na2FeSe2, with three orbitals at each iron site, will be
described by the multiorbital Hubbard H = Hk + Hin. The
kinetic or tight-binding component contains the nearest- and
next-nearest-neighbor hopping:

Hk =
∑

i,σ,γ ,γ ′
tγ ,γ ′ (c†

iσ,γ ci+1,σ,γ ′ + H.c.)

+ t ′
γ ,γ ′ (c†

iσ,γ ci+2,σ,γ ′ + H.c.) +
∑
iγ σ

�γ ni,σγ , (1)

where tγ ,γ ′ is the nearest-neighbor (NN) 3 × 3 hopping ampli-
tude matrix between sites i and i + 1 in the orbital space γ =
{dxz, dyz, dx2−y2}. ni,σγ stands for the orbital- and spin-resolved
particle number operator. These orbitals will be referred to
as γ = {1, 2, 3}, respectively, in the remainder of the paper,
for notation simplicity. As explained before, the hopping
matrices for Na2FeSe2 were obtained from a tight-binding
Wannier function analysis of first-principles results and they
are in electronvolt units. Explicitly, the NN 3 × 3 matrix tγ ,γ ′

between sites i and i + 1 in orbital space is given by

tγ ,γ ′ =

⎡
⎢⎣

−0.177 0.171 0.000

−0.171 0.114 0.000

0.000 0.000 0.144

⎤
⎥⎦,

where γ are the orbitals for site i and γ ′ for site i + 1. t ′
γ ,γ ′

is the next-nearest-neighbor (NNN) hopping matrix between
sites i and i + 2:

t ′
γ ,γ ′ =

⎡
⎢⎣

−0.037 −0.003 0.000

0.003 −0.053 0.000

0.000 0.000 −0.064

⎤
⎥⎦.

The on-site matrix containing the crystal fields �γ for each
orbital is given by

tOnSite
γ ,γ =

⎡
⎢⎣

−0.068 0.000 0.000

0.000 −0.134 0.000

0.000 0.000 −0.188

⎤
⎥⎦.

Note that we follow the convention that each 3 × 3 matrix
(both tγ ,γ ′ and t ′

γ ,γ ′) represents the hopping matrix to move
from one iron site to another. The full hopping matrix, which
includes both the back-and-forth hopping processes, are of
size 6 × 6 containing tγ ,γ ′ in the upper off-diagonal block,
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the transpose of tγ ,γ ′ in the lower off-diagonal block, and the
on-site matrix tOnSite

γ ,γ in both diagonal blocks [38]. The kinetic
energy bandwidth is W = 0.94 eV.

The electronic interactions portion of the Hamiltonian is
standard:

Hin = U
∑

iγ

ni↑γ ni↓γ +
(

U ′ − JH

2

) ∑
i,γ<γ ′

niγ niγ ′

−2JH

∑
i,γ<γ ′

Si,γ · Si,γ ′ + JH

∑
i,γ<γ ′

(P+
iγ Piγ ′ + H.c.).

(2)

The first term is the Hubbard repulsion between electrons in
the same orbital. The second term is the electronic repulsion
between electrons at different orbitals where the standard rela-
tion U ′ = U − 2JH is assumed. The third term represents the
Hund’s interaction between electrons occupying the active 3d
orbitals. The operator Si,γ is the total spin at site i and orbital
γ . The fourth term is the pair hopping between different
orbitals at the same site i, where Pi,γ =ci↓γ ci↑γ .

To solve numerically this Hamiltonian and obtain the
ground-state properties of Na2FeSe2, the DMRG and Lanc-
zos methods were used. Open boundary conditions were
employed in DMRG and at least 1200 states kept during
the calculations. For these DMRG calculations, we used the
DMRG++ computer program [49]. We fixed the electronic
density per orbital to be n = 4/3 (four electrons per site, i.e.,
four electrons in three orbitals). Such electronic density is
used in the context of iron superconductors where iron is in a
valence Fe2+, corresponding to six electrons in five orbitals. A
common simplification is to drop one orbital doubly occupied
and one empty, leading to four electrons in the remaining three
orbitals. Most of the DMRG calculations were performed
using chains of length L = 16 and L = 24, which for our
purposes of finding the magnetic properties of the ground state
are sufficient. Furthermore, by investigating small lattice sizes
(L = 4) with exact Lanczos diagonalization we reached the
same conclusions.

IV. RESULTS

In Fig. 3, we show the phase diagram of the three-orbital
Hubbard model. We use realistic ab initio hopping amplitudes
for Na2FeSe2 and vary U/W at fixed Hund coupling JH/U =
1/4 [50]. This phase diagram was constructed based on
DMRG calculations measuring several observables: the site-
average electronic density at each orbital nγ = 1

L

∑
i,σ 〈niσγ 〉,

the spin-spin correlation S(r) = 〈Sm · Sl〉 (where r = |m −
l|; m and l are sites), and the spin structure factor S(q) =
1
L

∑
m,l e−iq(m−l )〈Sm · Sl〉 using primarily a system size L =

16. The global electronic density is n = 4/3 (four electrons in
three orbitals at each site in average).

Four different phases were found: (i) a paramagnetic phase
(PM) at small U/W , followed by (ii) an unexpected block
phase (AF2) where ferromagnetic clusters of two spins are
coupled antiferromagnetically in a ↑↑↓↓ pattern. Then (iii)
an intermediate electronically inhomogeneous and spin ex-
otic state (AF3) was found, with ferro- and antiferromag-
netic ordering ↑↑↓↑↓↓↑↓. Finally, (iv) a canonical staggered
antiferromagnetic phase (AF1) ↑↓↑↓ becomes stable. To

AF1

AF2

AF3

FIG. 3. Schematic representation of the magnetic states observed
in the phase diagram. (i) AF1: standard staggered antiferromagnetic
phase ↑↓↑↓; (ii) AF2: antiferromagnetically coupled ferromagnetic
blocks resulting in ↑↑↓↓ spin order. (iii) AF3: mixed ferro- and
antiferromagnetic ordering ↑↑↓↑↓↓↑↓ stable in a narrow region of
couplings. At the bottom: schematic phase diagram of the ground
state for fixed JH/U = 0.25.

distinguish among these magnetic phases and to obtain the
approximate phase boundary location, we studied S(qp) vs
U/W , where q = qp is defined as the wave vector that displays
a sharp peak for each value of U/W studied.

A. Results at Hund coupling JH/U = 1/4

1. (a) AF2 and AF1 phases

At small Hubbard interaction U/W the system displays
metallic behavior without any dominant magnetic order, as
expected. In this PM regime, the spin correlation S(r) decays
rapidly with distance in the range U/W < 0.8, as exemplified
in Fig. 4(a). Increasing the Hubbard interaction U/W , the
system enters into the block phase with AF2 magnetic order-
ing. In Fig. 4(b), the spin correlations S(r) at U/W = 4.0 are
presented, clearly showing the formation of antiferromagnet-
ically coupled ferromagnetic spin clusters in a ↑↑↓↓ pattern.
Because of this block order, the spin structure factor S(q) in
the AF2 phase displays a sharp peak at q = π/2, shown in
Fig. 4(d). The peak value increases with the system size L,
providing evidence of a stable, exotic π/2-block magnetic
state in the system. Note that the canonical power-law de-
caying real-space correlations in one dimension prevents S(q)
from diverging with increasing L, but in a real material it
is expected that weak interchain couplings will stabilize the
several phases we have observed.

As shown in Fig. 5(a), S(qp) = S(π/2) dominates in
the range 0.8 � U/W � 8.5, signalling a stable block
phase in a broad region of parameter space at JH/U =
0.25. Similar block AF2 spin patterns, albeit extended
in two dimensions into 2 × 2 ferromagnetic blocks, have
been also experimentally observed in two-dimensional
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FIG. 4. Real-space spin correlation S(r) = 〈Sm · Sl〉, with r =
|m − l|, for various values of the Hubbard interaction U/W , at fixed
JH/U = 0.25 and using an L = 24 cluster studied with DMRG.
Results are shown for (a) the PM phase at U/W = 0.4, (b) the
block phase (AF2) at U/W = 4.0, and (c) the staggered AF1 phase
at U/W = 12.0. The AF3 state will be discussed later in Fig. 6.
The spin structure factor S(q) is shown for three values of L at
(d) U/W = 4.0 in the block AF2 phase and (e) U/W = 12.0 in the
AF1 phase.

iron-selenium–based compounds with vacancies, such as
Rb0.89Fe1.58Se2 and K0.8Fe1.6Se2 [6], and more importantly
for our purposes, also in the two-leg ladder BaFe2Se3 [9],
which is a close “relative” of the Na2FeSe2 compound due
to the common one dimensionality and iron valence Fe2+.
Although it is difficult to establish with clarity what induces

(a)

(b)

FIG. 5. (a) Spin structure factor S(qp) vs U/W at JH/U = 0.25
for several values of the three dominant wave vectors shown in the
legend. (b) Site-average electronic occupancy nγ for the three orbitals
{γ = 1, 2, 3} vs U/W using DMRG and a chain of L = 16 sites.
Inset: Site-average expectation value of the total spin squared vs
U/W at JH/U = 0.25.

this block state, previous work [14] suggests that this phase is
a result of competition between the Hund coupling JH , favor-
ing ferromagnetic alignment of spins as in double-exchange
manganites [51], and the standard superexchange Hubbard
spin-spin interaction that aligns the spins antiferromagneti-
cally. One surprising aspect is that in the block AF2 phase
the population of orbital γ = 3 appears locked to 1.5 in all
the range of U/W investigated [Fig. 5(b)]. On the other hand,
the occupancies of the other orbitals γ = 1 and γ = 2 change
with varying U/W in the same range.

In the inset of Fig. 5(b), the mean value of the local
spin-squared averaged over all sites 〈S2〉 = 1

L

∑
i〈Si · Si〉 is

shown vs U/W . For U/W > 1.0, strong local magnetic mo-
ments are fully developed at every site with spin magnitude
S ≈ 1, as expected for four electrons in three orbitals and
a robust Hund coupling. In experiments, alkali-metal iron
selenide compounds generally show large magnetic moments,
particularly when compared to iron pnictide compounds.

In Fig. 5(b), the site-average occupancy of orbitals nγ

vs U/W is shown, and for U/W > 9.5 the population of
orbital γ = 3 reaches 2, thus decoupling from the system,
while the other two orbitals γ = 1, 2 reach population 1.
This arrangement minimizes the double occupancy at large
U/W . In this Mott AF1 phase, the spin correlations show
a canonical staggered AFM ordering, see Fig. 4(c), due to
the dominating effect of the superexchange mechanism in the
system, now involving only two active orbitals. The structure
factor displays a sharp peak at q = π , see Fig. 4(e).

2. Inhomogeneous AF3 phase

At interaction 8.5 < U/W < 9.5, a novel orbital-selective
charge density wave phase was observed with an exotic
AF3 spin ordering. This phase exists for all the lattice sizes
analyzed, and moreover, it appears using both DMRG and
Lanczos, as shown below; thus we believe it is a real regime
of the present model. Figure 6(a) displays the population of
the three orbitals 〈nγ ,i〉 vs the site index i at U/W = 9.1. The
results show an orbital-selective charge density wave phase.
The pattern that develops has two sites with integer fillings,
such as 1.0 and 2.0, followed by two sites with a fractional
filling for all three orbitals. Orbital 3 jumps from population
2.0 as in the AF1 phase, to population 1.5 as in the AF2 phase,
as compared with Fig. 5(b). The other two orbitals 1 and 2
display similar characteristics, namely, a mixture of AF1 and
AF2 features.

Interestingly, in parallel to an inhomogeneous charge den-
sity arrangement, a novel spin pattern AF3 ↑↑↓↑↓↓↑↓ de-
velops in the system for this range of U/W , see Fig. 6(b).
The structure factor S(q) shows a peak at q = 3π/4 which
grows with increasing the system size, see Fig. 6(c). The
phase boundary of this exotic AF3 phase is determined by
comparing the peaks of the spin structure factors. As shown
in Fig. 5(b), the peak at q = 3π/4 clearly dominates over
other peaks of S(q) in the range 8.5 < U/W < 9.4. Similar
spin configurations have also been reported in the study
of the one-dimensional two-orbital Hubbard model [22] at
density n = 2.33. We believe that this exotic phase stabilizes
in the phase diagram, mainly due to the NNN hopping t ′

γ ,γ ′ ,
since it generates frustration in the system. Eventually, for
large enough values of the Hubbard interaction U/W > 9.5,
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FIG. 6. (a) Electronic occupancy 〈nγ ,i〉 for the three orbitals
{γ = 1, 2, 3} vs site index i at U/W = 9.1, L = 24, in the AF3
regime showing an orbital-selective charge density wave. (b) Spin
correlation S(r) = 〈Sm · Sl〉 at U/W = 9.1 using a L = 24 cluster
displaying the AF3 magnetic ordering ↑↑↓↑↓↓↑↓. (c) The spin
structure factor for three different values of L = 8, 16, 24 and at
U/W = 9.1. Clear peaks at q = 3π/4 are shown.

the system enters into the insulating Mott phase with stag-
gered AF1 magnetic ordering.

3. Density of states and charge fluctuations

To characterize, at least qualitatively, the metallic vs insu-
lating nature of the different phases, we have calculated the
orbital-resolved density of states using the Lanczos method
for small L = 4 three-orbital Hubbard model clusters. While
these clusters are small, the results are exact. Figure 7 contains
the orbital-resolved density of states (DOS) vs ω − μ (ω is the
frequency and μ the chemical potential) for different values of
the interaction parameter U/W . In the paramagnetic phase, all
three orbitals have a robust weight at the Fermi level, Fig. 7(a),
indicating metallic behavior. For the block phase at U/W = 4,
we observe considerably lower weight at the Fermi level for
all three orbitals, Fig. 7(b), signaling a possible pseudogap and
bad metallic behavior in the system. As expected, in the Mott
phase Fig. 7(c) shows that at U/W = 10 the system opens a
large gap, confirming the insulating nature of the AF1 state.
The lower Hubbard band of insulating orbitals 1 and 2 is not
shown (located much lower in energy).

To better understand the characteristics of metallic vs
insulating behavior, in addition to Lanczos we have calculated
the orbital-resolved local density of state ρi,γ (ω) as a function
of frequency ω using dynamical DMRG within the correction-
vector formalism in Krylov space [52]. The orbital-resolved
local density of state (LDOS) has two components: (i) Above
the chemical potential it becomes

ρ+
i,γ (ω) = −1

π
Im

[
〈ψ0|ci,γ

1

ω − H + Eg + iη
c†

i,γ |ψ0〉
]
, (3)

and (ii) below the chemical potential the LDOS is

ρ−
i,γ (ω) = 1

π
Im

[
〈ψ0|c†

i,γ

1

ω + H − Eg − iη
ci,γ |ψ0〉

]
, (4)

0

1

2

3
(a) U/W = 0.4

0

1

2

ρ
(ω

−
μ
) (b)U/W = 4.0

0

1

2

3

−4 −3 −2 −1 0 1 2 3 4
ω − μ

(c) U/W = 10.0

γ = 1
γ = 2
γ = 3

FIG. 7. DOS of different orbitals corresponding to different
phases at JH/U = 0.25 on a four-site three-orbital system using
Lanczos diagonalization. (a) Corresponds to the PM phase at U/W =
0.4, (b) is for the AF2 phase at U/W = 4.0, while (c) is for the AF1
phase at U/W = 10.0.

where ci,γ is the fermionic annihilation operator while c†
i,γ is

the creation operator, Eg is the ground-state energy, and ψ0

is the ground-state wave function of the system. We set the
broadening parameter as η = 0.1 for the DMRG calculations.
To avoid edge effects, for the LDOS we chose a central site
i = L/2 + 1 for the system size L = 16. For the block phase at
U/W = 4.0 [Fig. 8(a)], a pseudogap with suppressed weight
near the Fermi energy appears, which is in accord with the
Lanczos DOS, suggesting a bad metallic behavior for the AF2
phase. In Fig. 8(b), results for the LDOS at the AF3 phase
using U/W = 9.1 are shown. Here, due to the appearance
of orbital-selective density order, we calculate results for two
sites (one of each kind, i.e., with γ = 3 equal to 2.0 and 1.5)
and then average to obtain a net LDOS. The resulting LDOS
at U/W = 9.1 in Fig. 8(b) indicates the insulating behavior of
the system.

In addition to the DOS, we have also investigated the
charge fluctuations δN to distinguish between a metal and
an insulator. Figure 8(c) displays the δN charge fluctu-
ations defined as δN = 1/L

∑
i (〈n2

i 〉 − 〈ni〉2) (where ni =∑
γ niγ ) and also the orbital-resolved charge fluctuation

δNγ = 1
L

∑
i〈n2

γ ,i〉 − 〈nγ ,i〉2 varying U/W . For U/W � 0.8,
the large local charge fluctuations indicate strong metallic
behavior in the PM phase as expected. Increasing U/W , the
charge fluctuations δN decrease substantially but remain finite
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FIG. 8. Local DOS of different orbitals corresponding to differ-
ent phases at JH/U = 0.25 for system size L = 16 using dynamical
DMRG. (a) The AF2 phase at U/W = 4.0 and (b) the AF3 phase at
U/W = 9.1. (c) Site-averaged local charge fluctuations and orbital-
resolved charge fluctuations vs U/W at JH/U = 0.25 and for L =
16. The nonzero values indicate charge fluctuations are present in
the entire AF2 phase, suggesting it is metallic.

for U/W � 8.5, hinting towards a (bad) metallic behavior of
the system in the block AF2 phase. Moving beyond U/W >

9.5, the charge fluctuations approach zero, providing further
evidence of insulating behavior in the AF1 phase. The AF3
phase is difficult to judge because of its narrow-range nature,
but it also seems insulating. These results are in agreement
with the Lanczos DOS analysis in Fig. 7.

B. Phase diagram varying JH/U and U/W

Figure 9 contains the phase diagrams of our three-
orbital Hubbard model using realistic hopping parameters for
Na2FeSe2 and varying JH/U from 0.15 to 0.30 and U/W from
0 to 10. The phase diagram shown in Fig. 9(a) is based on
the DMRG calculations (L = 16), while Fig. 9(b) is based on
Lanczos calculations using L = 4 sites. To obtain the phase
boundaries among the different phases, we have used the peak
values of the spin-structure factor S(qp) and the site-average
occupancies of each of the orbitals nγ = 1

L

∑
i,σ 〈niσγ 〉. For

lower values of U/W , as expected the metallic PM phase dom-
inates in the phase diagram for any values of JH/U . The phase
boundary of the PM phase clearly is very similar between the

0 1 2 3 4 5 6 7 8 9 10
U/W

0.15

0.18

0.21

0.24

0.27

0.30

J H
/U

DMRG

AF2

AF1

AF3

PM

(a)

0 1 2 3 4 5 6 7 8 9 10
U/W

0.15

0.18

0.21

0.24

0.27

0.30

J H
/U

Lanczos

AF2

AF1
AF3

PM

(b)

FIG. 9. Phase diagram of the three-orbital Hubbard model with
the hopping amplitudes of Na2FeSe2, varying the Hund coupling
and Hubbard interactions. Panel (a) depicts results based on DMRG,
while panel (b) are results using the Lanczos method on an L = 4
sites cluster and open boundary conditions. PM stands for param-
agnetic phase, while AF2 for block phase with ↑↑↓↓ order. The
intermediate phase AF3 with ↑↑↓↑↓↓↑↓ spin ordering appears
using both methods in a narrow range of couplings. AF1 stands for
the staggered antiferromagnetic phase ↑↓↑↓↑.

DMRG and Lanczos results. Further increasing the Hubbard
interaction U/W , in the lower range of Hund couplings JH/U
shown, the block AF2 phase stabilizes in a small region of the
phase diagram, while the staggered AF1 phase dominates over
a larger portion. At not too large JH/U , the superexchange
mechanism dominates and promotes primarily staggered AF1
magnetic ordering, as expected. For these moderate values of
JH/U , a rapid cascade of transitions (PM → AF2 → AF3
→ AF1) is observed. For JH/U < 0.19, the narrow region
in between AF2 → AF1 shows incommensurate behavior
(not shown), while for JH/U > 0.19 this intermediate region
displays the exotic AF3 spin order with peak at q = 3π/4.

Interestingly, by increasing JH/U the block AF2 phase
with spin configuration ↑↑↓↓ stabilizes over a large portion
of the phase diagram. This magnetic block state (AF2) is the
same as found before in the context of orbital-selective Mott
phases [14,22,23], although here the three orbitals remain
itinerant, i.e., none has a population locked to one. As in
those previous efforts, we believe the block spin order AF2
arises from competing superexchange order at small JH and
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q = π

FIG. 10. Spin structure factors S(q) at q = π/2, 3π/4, and π vs
U/W for (a) JH/U = 0.20 and (b) JH/U = 0.25, using the Lanczos
method for L = 4 sites, and the three-orbital Hubbard model used
here.

double-exchange ferromagnetism at large JH . While in our
phase diagram there is no ferromagnetic phase in the range
studied, we found that removing the NNN hopping leads to a
stable ferromagnetic region, as in previous efforts [14,22,23].
Thus the ferromagnetic state is certainly close in energy.

Also note the good agreement between the DMRG and
Lanczos results found for the phase diagrams, see Fig. 9(a)
vs Fig. 9(b), except for small JH/U where the AF3 phase
is broader with Lanczos than DMRG, with opposite effects
for the AF2 region. This small difference may be due to size
effects. However, at moderate JH/U between 0.19 and 0.25—
a region considered realistic for iron-based compounds—the
AF2 phase, which represents our main prediction for the
physics of Na2FeSe2 if ever synthesized, is large and robust as
Fig. 5(a) shows using DMRG and Fig. 10(b) using Lanczos.

V. CONCLUSIONS

In this publication the phase diagram of the one-
dimensional chain compound Na2FeSe2 has been

investigated. We used a realistic three-orbital Hubbard
model with the hopping amplitudes derived from ab
initio calculations. The phase diagram presented here was
constructed at electronic density n = 4 per site (the analog of
n = 6 in a five-orbital system). This is an interesting material
of the family of iron superconductors that has both a dominant
chain geometry in the structure (not ladder) and valence
Fe2+. Our phase diagram is based primarily on DMRG
measurements of the orbital occupancy and spin structure
factor, supplemented by Lanczos techniques. In comparison to
previously studied n = 5 one-dimensional three-orbital
models for iron-based compounds such as TlFeSe2, which
display a trivial staggered spin order, we find a much richer
phase diagram for the alkali-metal iron selenide compound
Na2FeSe2. In particular, at low JH/U the staggered spin
order dominates, but upon increasing JH/U the block AF2
phase ↑↑↓↓ is stabilized over a large region of the phase
diagram. We also observed a narrow region of a new phase
AF3, with charge density wave properties and a combination
of features of the AF1 and AF2 dominant phases, leading
to a net ↑↑↓↑↓↓↑↓ magnetic order. Previous results with
iron ladders suggest that high-pressure probes may also bring
surprises, such as metallicity and even superconductivity.
As a consequence, we encourage experimentalists to
synthesize Na2FeSe2 and investigate its magnetic properties
via neutron-scattering experiments.
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