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Fractionalized excitations develop in many unusual many-body states such as quantum spin liquids,
disordered phases that cannot be described using any local order parameter. Because these exotic
excitations correspond to emergent degrees of freedom, how to probe them and establish their existence is a
long-standing challenge. We present a general procedure to reveal the fractionalized excitations using real-
space entanglement entropy in critical spin liquids that are particularly relevant to experiments. Moreover,
we show how to use the entanglement entropy to construct the corresponding spinon Fermi surface. Our
work defines a new pathway to establish and characterize exotic excitations in novel quantum phases of
matter.
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Introduction.—A hallmark of strongly correlated sys-
tems is the emergence of novel degrees of freedom at
low energies from strong correlations. A prototype case is
fractionalized excitations—fundamentally different from
excitations in weakly interacting limit—such as spinons
in herbertsmithite ZnCu3ðOHÞ6Cl2 [1] and YbMgGaO4

[2–4]. A particularly intriguing possibility arises in quan-
tum spin liquids because their emergent fermionic excita-
tions can form a Fermi surface in momentum space,
rendering the properties of these insulators akin to those
of conventional metals. The two-dimensional (2D) triangu-
lar lattice-based organic compounds EtMe3Sb½PdðdmitÞ2�2
and κ-ðETÞ2Cu2ðCNÞ3 [5–8] are among the most famous
candidate materials believed to host such a critical spin
liquid (CSL) with an emergent spinon Fermi surface (SFS)
[9,10]. A four-spin ring exchange is needed to describe
these materials [11–13]. An outstanding challenge is how
to demonstrate and reveal the presence of fractionalized
fermionic excitations, particularly with regards to the SFS.
On the theory side, it has been proposed to study the

emergent SFSs in CSLs through the singular peaks in the
spin structure factor (SSF)—those that arise from real-
space power-law decaying spin correlations—which can be
related to the locations of the SFS [9]. Using this procedure,
recent density matrix renormalization group (DMRG)
results reported the possible SFS of the spin-1=2 model
on a triangular lattice with a four-spin ring exchange
[12,13] and in the Kitaev model on a honeycomb lattice
[14]. However, it is still difficult to reconstruct the actual
shape of the SFS through the DMRG results of the SSFs
based on small system sizes.
An alternative quantity to describe long-range entangled

states is the entanglement entropy (EE) [15], such as the

von Neumann EE and the Renyi EE (REE), which are
obtained from reduced density matrix of a subsystem by
tracing out the degrees of freedom outside this subsystem.
The EE plays an important role in several fields, ranging
from quantum information to condensed matter physics
[16], and has been measured experimentally [17]. It is
believed that the EE of the ground states in most local
Hamiltonians satisfies the “EE area law” [18]: when a
system is divided into subsystems, the EE is proportional to
the area of the boundary between the two subsystems at the
leading order.
Violations of the EE area law do exist in various cases. In

one dimension, they are found in several quantum critical
systems [19]. In higher dimensions, these violations are
associated with the presence of a SFS in momentum space.
The most well-known examples are the ground states of
free fermions with Fermi surfaces [20,21], where the
violation is logarithmic, i.e., the EE is proportional to
the surface area multiplied by a factor that grows logarith-
mically with the subsystem size. Intriguingly, the EE in
these noninteracting systems takes the Widom formula
[20–22], where the coefficient of the leading term in the
dependence of EE on the subsystem size captures the
geometric information of the Fermi surface and that of
the subsystem. For gapless electronic systems, calculations
perturbative in the interactions [23] show that such a
violation retains the same form as that of a free Fermi
gas. Recently, it has been suggested that the EE associated
with the composite Fermi liquid phase of the half-filled
Landau level (ν ¼ 1=2) is also described by the Widom
formula [24]. By contrast, for frustrated strongly correlated
electrons, as in Hubbard models, or spin systems, as in
Heisenberg models, all with a possible emergent SFS, the
EE has not been much explored [25,26].
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Our present work goes beyond previous efforts
and provides a generic procedure to reconstruct the
geometry of the emergent SFS. We present the first
variational Monte Carlo (VMC) study of the EE to test
the conjectured Widom formula for strongly correlated
systems. Employing a widely discussed example of a CSL
with an emergent SFS, we introduce a direct probe of
emergent fractionalized excitations using the real-space EE
together with examining the singularity of the SSF.
Remarkably, we show that the leading order of the EE
has the form of the Widom formula multiplied by a
previously unknown factor of 2. This numerical factor
captures the presence of two free gapless modes associated
with two flavors of spinons. From this formula, we provide
the basis [27] for a systematic methodology to explicitly
reconstruct the emergent SFS geometry. We remark that
using the SSF or EE individually only allows you to test the
existence or not of fractionalized excitations (i.e., a “yes” or
“no” answer), but a combined methodology is necessary to
recover the full shape of the SFS. We also remark that we
employ VMC only for simplicity: our methodology can be
used if other techniques are employed, such as the quantum
Monte Carlo technique or DMRG. With the only caveat
that it is advisable to employ several trial states to search for
self-consistency to remove the bias uncertainty intrinsic of
variational procedures, our procedure is quite generic.
Entanglement entropy and Widom formula.—We will

first provide robust numerical evidence for the validity of
the Widom formula in a CSL with emergent SFS. A typical
ground-state wave function (WF) to represent the possible
CSL on a triangular lattice [5–8] is the Gutzwiller projected
Slater determinant:jψi ¼ PGjψ0i, where the Gutzwiller

projector PG ¼ Q
ið1 − ni↑ni↓Þ forbids double occupation

on each site, and jψ0i is the ground state of the mean-
field Hamiltonian on the triangular lattice HMF ¼
P

hi;ji;σ tijc
†
i;σcj;σ þ H:c: The Gutzwiller projector PG is

crucial to avoid a trivial Fermi surface of real electrons,
while still allowing a possible SFS. This variational WF is
known to be accurate for the quasi-1D J1 − J2 spin-1=2
chain with four-spin exchanges [28], providing a reason-
able starting point for our effort. We begin by considering
an isotropic system with a total number of sitesNs ¼ L × L
[t0 ¼ t in Fig. 1(a)].
Based on the Widom formula, the REE associated with a

subsystem consisting of LA × αLA sites along the a1 ≡
ð1; 0Þ and a2 ≡ ð1=2; ffiffiffi

3
p

=2Þ directions (lattice constant
a≡ 1), as illustrated in the bottom left portion of Fig. 1(a),
can be concisely expressed as follows (derivations in
Supplemental Material [29])

S2 _¼
ceff
8π

ð1þ αÞAsfLA lnLA

¼ ceff
8π

ð1þ αÞjkn̂FR − kn̂FLjLA lnLA; ð1Þ

where _¼ means the leading logarithmic contribution in
REE, α represents the ratio between the linear length of the
subsystem (LA) and that of the whole system (L), i.e.,
α ¼ LA=L, and ceff is effectively the number of free gapless
modes in the low-energy limit. Additionally, Asf refers to
the cross section of the SFS, which is determined by the
span in the momenta between right or left moving patches
(kn̂FR=L) of the SFS along any particular observation
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FIG. 1. (a) Illustration of the subsystem geometries used to obtain the REE on the triangular lattice. In the simplest case, we consider
a subsystem (illustrated in the left bottom part) consisting of LA × αLA sites along a1 ¼ ð1; 0Þ and a2 ¼ ð1=2; ffiffiffi

3
p

=2Þ directions. The top
right portion illustrates the emergent SFS. For a direction n̂, there are two Fermi patches perpendicular to n̂ that define momenta kn̂FR=L
for the right or left Fermi patches. For an emergent surface with an inversion center—natural for a system with time-reversal symmetry
or inversion symmetry—the length of the difference between kn̂FR and kn̂FL gives its cross section along n̂. (b) REE, S2, for different
subsystem geometries using the isotropic Gutzwiller-projected WF. Based on Eq. (1), we plot S2=½ð1þ αÞLA� vs lnðLAÞ. The slopes of
the lines give the prefactor of the leading term of the REE. We fix the whole system size and choose the subsystem size to be LA × αLA
with α ¼ 1 and 1=2. The data on L ¼ 18 with α ¼ 1 (red squares) are consistent with Ref. [26]. We can clearly observe the
proportionality S2 ∝ ð1þ αÞLA lnLA.
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direction n̂. This is illustrated in the top right portion of
Fig. 1(a), where the emergent SFS is expected to be
circular.
We have carried out the VMC simulations on the

triangular lattice with the whole system size fixed to be
L × L, with L up to 20. We calculated the REE associated
with a subsystem of LA × αLA sites, where both LA and
αLA are less than or equal to L=2. The resulting REE vs LA
is plotted in Fig. 1(b), which shows that S2=½ð1þ αÞLA� vs
lnLA has the same slope for different choices of α within
error bars. The proportionality S2 ∼ ð1þ αÞLA lnLA pro-
vides direct evidence that the REE of the CSL studied here
satisfies the Widom formula Eq. (1). The slope in
Fig. 1(b) gives the value of the combined variable
ceffAsf ¼ ceff jkn̂FR − kn̂FLj. In order to pin down the explicit
formula for the REE of a CSL, additional information is
needed to determine the values of ceff and An̂

sf separately, as
addressed next.
Spin structure factor.—Using the VMC described

earlier, we calculated the SSF Dq ≡ ð1=NsÞ×P
i;jhSi · Sjieiq·ðri−rjÞ with the spin operator Si ¼

P
σ;σ0

1
2
c†iσσσ;σ0ciσ0 . It is known that for an arbitrary obser-

vation direction n̂, Dq should show singular peaks at q ¼ 0
and kn̂FR − kn̂FL, which are associated with forward and
backward scattering processes. The information of Dq

can be used to determine the cross section of the emergent
SFS whose surface unit vector is perpendicular to n̂, i.e.,
An̂
sf ¼ jkn̂FR − kn̂FLj [28]. In the isotropic case, An̂

sf ¼ Asf is
independent of the direction.
In Fig. 2 we show the numerical data for the SSF on a

triangular lattice with 30 × 30 sites. Figure 2(a) gives a 3D

side view of the SSF in the Brillouin zone (BZ), denoted by
the black hexagon, where we can see a sharp singular point
at q ¼ 0 and weaker singular lines on the surface whose
locations are theoretically suggested to be q ¼ kn̂FR − kn̂FL.
Figure 2(b) shows the 3D top view of Dq. In the present
finite-size calculations, the singular lines on the 3D Dq

surface are more clearly revealed near the BZ boundary,
while the weaker singular lines inside the BZ are masked by
the sharper singular point at q ¼ 0. From Fig. 2(b), we can
determine the location of the full singular lines by fitting
kn̂FR − kn̂FL [27], which allows us to extract the (average)
cross sections of the emergent SFS to be 5.24� 0.05.
When this value for the cross section is combined with the
slopes of the normalized REE vs lnðLAÞ shown in Fig. 1(b),
we obtain ceff ≃ 2.01� 0.02. This value indicates the
presence of two free gapless modes for each “independent”
1D patch in the low-energy limit [30], so it should be
universal for all shapes of convex critical Fermi surfaces.
If we introduce anisotropy into the system, ceff should
remain the same.
Visualizing emergent spinon Fermi surface.—The

explicit formula for the EE obtained above can be used
to reveal the emergent SFS directly. For an isotropic
system, since the shape of an emergent SFS is circular,
and its diameter can be extracted once the REE is
calculated. To address a more general case, we focus on
a triangular lattice system with anisotropy. Specifically, we
consider a Gutzwiller-projected WF with hopping ampli-
tudes t along each ladder (�a1 directions) and t0 along the
zigzag directions [�a2 and �ða1 − a2Þ] that couple differ-
ent ladders as shown at the bottom right of Fig. 1(a). For an
illustration, we use t0=t ¼ 0.7 to obtain the REE associated
with the subsystems.

FIG. 2. The 3D plot of SSF for the isotropic case. (a) Side view of the SSF within the BZ for the isotropic case (black hexagon
represents the BZ), employing a triangular 30 × 30 cluster. There is a sharp and singular peak at q ¼ 0, which corresponds to the
uniform real-space power-law decaying behavior. The much weaker singular lines near the boundary of the BZ correspond to the
oscillating real-space behavior caused by the presence of the SFS. (b) Top view of the SSF. The blue lines are fitting results that are seen
to match well with the singular lines for the SFS in the SSF on a triangular lattice consisting of 30 × 30 sites. The details of the fitting
method are in Supplemental Material [29].
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Because of numerical and computational time limita-
tions, below we choose three subsystem geometries to
obtain the REE and thereby construct the anisotropic SFS.
Specifically, we calculate the REE for a subsystem with
LA × αLA sites, where we consider ratios α ¼ 1=2; 1; 2.
The REE results in these systems are shown in Fig. 3(a).
Setting ceff ¼ 2 for the present anisotropic system the
formula for REE becomes

S2 _¼
1

4π
ðαAa2 þ Aa1ÞLA lnðLAÞ; ð2Þ

where Aa1 or 2 represents the cross sections of the SFS
projected onto the a1 or 2 axis. We can write down three
equations, corresponding to α ¼ 1=2, 1, and 2, respecti-
vely: (i) Aa1 þ Aa2 ¼ 4π × 0.86� 0.01, (ii) Aa1 þ Aa2=2 ¼
4π × 0.61� 0.02, and (iii)Aa1 þ 2Aa2 ¼ 4π × 1.31� 0.03.
We can choose any two out of the three equations to obtain
the values of Aa1 or 2 . Since there are three choices, we can
obtain three numerical approximations for Aa1 or 2, which we
average over to reduce the statistical error. We find that
Aa1 ≃ 1.53π and Aa2 ≃ 1.89π, based on which the shape of
the emergent SFS can be constructed as illustrated in
Fig. 3(b). The green and the blue lines represent the cross
sections of Aa1 and Aa2 . Since there is an inversion center
for the emergent surface in momentum space [27], once Aa2

is known, we can draw its inverted partner, denoted as Ãa2
(brown line) in Fig. 3(b). The dashed lines are perpendicular
toAa1=2 and Ãa2 , respectively. Connecting all the intersections
of the dashed lines results in the red hexagonal shape, which
provides the leading-order approximation to the shape of
the emergent SFS. In principle, we can improve the accuracy

of the shape if we perform more (time consuming) REE
calculations using different subsystem geometries [27].
For comparison, we also show the shape of the SFS in

Fig. 3(b) (light-gray ellipse) obtained by extracting kn̂FR −
kn̂FL from the SSF. The exact numerical results for the SSF
are shown in Supplemental Material [29]. The emergent
SFS reconstructed from the REE results is quite consistent
with the light-gray ellipse in Fig. 3(b), which provides
additional support for our procedure. With (costly) addi-
tional values of α our results will be even closer to the
ellipse. We remark that in strongly correlated systems,
where analytical methods are difficult to use and numerical
simulations only can be performed on small clusters, it
may be difficult (or sometimes impossible) to determine
the locations of kn̂FR − kn̂FL and thus the here proposed EE
probe becomes the only practical procedure, exhibiting its
unique value. From this overarching perspective, the
present work builds up a foundation for using the EE to
probe emergent SFSs in general cases.
Conclusion and outlook.—In this work, we examined the

entanglement properties of a CSL with an emergent SFS.
Numerically, we have proved the validity of a generalized
Widom formula Eq. (1) [29] for this type of strongly
correlated systems. Based on this formula, we provide a
general procedure to reveal and construct the shape and size
of emergent SFSs, by examining the singularity of the SSF
and the real-space EE. This is an advance over previous
efforts that relied on the singular peaks in the SSFs to locate
the SFS by DMRG, because using only the latter the whole
shape of the SFS cannot be obtained. In addition, we have
obtained the universal factor ceff ¼ 2 that describes two
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FIG. 3. (a) EE in the presence of anisotropy along the zigzag bonds. We fix the whole system size to be 18 × 18 and choose the
subsystem size to be LA × αLA with α ¼ 1=2 (blue squares), 1 (red circles), and 2 (green diamonds) to extract the REE.
(b) Reconstruction of the SFS with an inversion center. Based on the REE results in (a), we can obtain the cross sections of the
SFS projected onto a1=2 axis, Aa1=2 (green and blue lines). Because of the presence of an inversion center, we can draw an inverted partner

of Aa2 denoted as Ãa2 (brown line). The dashed lines are perpendicular to Aa1=2 and Ãa2 , and connecting all the intersections of the dashed

lines gives the shape of the SFS in the lowest order. The light-gray ellipse is the SFS obtained by extracting kn̂FR − kn̂FL from the SSF.
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free gapless modes in a CSL employing robust numeral
calculations, without “guessing” this value in advance.
The current work can be straightforwardly generalized to

CSLs of higher-spin (S ≥ 1) systems. Of particular interest is
the 6H-B phase of S ¼ 1Ba3NiSb2O9 [31,32] that was
recently suggested to realize a CSL with three flavors of
fermionic spinons, forming a large SFS [33]. From our
perspective, it is always possible towrite down a Gutzwiller-
projected WF of three flavors of fermions to represent the
S ¼ 1 CSL. Based on the results presented here, we con-
jecture that the leading EE in this case also satisfies the
Widom formula, but with ceff ¼ 3. Finally, our work points
to new prospects for deepening the understanding of corre-
lated systems such as heavy-fermion materials, in which the
nature of quantum spins and Fermi surface plays a crucial
role [34]. Examining the quantum entanglement properties
promises a conceptually new way of elucidating their
quantum phases and criticality.
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