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Since its discovery, iron-based superconductivity has been known to develop near an antiferromagnetic order,
but this paradigm fails in the iron chalcogenide FeSe, whose single-layer version holds the record for the highest
superconducting transition temperature in the iron-based superconductors. The striking puzzle that FeSe displays
nematic order (spontaneously broken lattice rotational symmetry) while being nonmagnetic, has led to several
competing proposals for its origin in terms of either the 3d-electron’s orbital degrees of freedom or spin physics
in the form of frustrated magnetism. Here we argue that the phase diagram of FeSe under pressure could be
qualitatively described by a quantum spin model with highly frustrated interactions. We implement both the
site-factorized wave-function analysis and the large-scale density matrix renormalization group (DMRG) in
cylinders to study the spin-1 bilinear-biquadratic model on the square lattice, and identify quantum transitions
from the well-known (π, 0) antiferromagnetic state to an exotic (π, 0) antiferroquadrupolar order, either directly
or through a (π/2, π ) antiferromagnetic state. These many phases, while distinct, are all nematic. We also
discuss our theoretical ground-state phase diagram for the understanding of the experimental low-temperature
phase diagram obtained by the NMR [Wang et al., Phys. Rev. Lett. 117, 237001 (2016)] and x-ray scattering
[Kothapalli et al., Nat. Commun. 7, 12728 (2016)] measurements in pressurized FeSe. Our results suggest
that superconductivity in a wide range of iron-based materials has a common origin in the antiferromagnetic
correlations of strongly correlated electrons.
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I. INTRODUCTION

Understanding the iron-based superconductors (FeSCs)
has been a subject of extensive research in recent years [1–5].
The initial interest started with the discovery of superconduc-
tivity in the iron pnictides. More recently, iron chalcogenides
have provided considerable material variety to this intriguing
field and reached the new record of superconducting transition
temperature (Tc) in FeSCs. These include the potassium iron
selenides and other intercalated FeSe systems [6], as well
as the single-layer FeSe built on substrates [7,8]. Because
all these record-breaking materials involve FeSe as a build-
ing block, it is important to understand the physics of bulk
FeSe [9,10]. Indeed, there is a vast current interest in this
system, which possesses the simplest structure among the
FeSCs. In contrast to the standard case of the iron pnictides,
where a tetragonal-to-orthorhombic structural phase transition
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is accompanied by a (π, 0) antiferromagnetic (AFM) order
[2,3,11], FeSe displays the same type of structural transition,
with Ts ≈ 90 K at ambient pressure, but no magnetic long-
range order [12–19]. The nematic order is important to a
variety of electronic properties of FeSe [20–23].

Several studies have advanced proposals which attribute
to the unusual behavior of FeSe to frustrated magnetism
among the correlation-induced local moments [24–26]. A
nonmagnetic, antiferroquadrupolar (AFQ) state with wave
vector (π, 0) appears as a result of frustrated magnetism and
has the properties of the bulk FeSe [24], although additional
experimental and theoretical work is needed to confirm the
existence of this AFQ state in FeSe. An important appeal
of this theoretical picture is that the predicted spin excita-
tions, both for low energies near the wave vector (π, 0) and
for higher energies over an extended range of the Brillouin
zone, are compatible with recent experiments [20,21,27–29].
Meanwhile, parallel proposals [14,15,30] invoke the ordering
of the electrons residing on Fe’s 3dxz and 3dyz orbitals, which
are degenerate in the C4-symmetric (tetragonal) phase above
Ts. This idea is also appealing, because the splitting between
the two 3d orbitals has been observed in angle-resolved
photoemission (ARPES) experiments for FeSe [16–18,23].
Determining which of these competing ideas captures better
the essential physics is important to understanding the central
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microscopic ingredients for the normal state of the FeSCs as
well as to elucidate the degree to which the mechanism for
superconductivity is universal across the many varieties of
FeSCs.

In this paper we address this issue by exploring the quan-
tum phases and phase transitions related to the nematic phase
of FeSe. We focus on studying a spin-1 bilinear-biquadratic
model on the square lattice, which has been considered before
to understand the exotic magnetism and nematic order of the
iron-chalcogenide superconductors [24,25,31–36] but has not
been systematically studied to understand the quantum phases
and phase transitions of FeSe under pressure. We implement
both the site-factorized wave-function analysis and large-scale
DMRG method on this model. In general, models with differ-
ent active microscopic degrees of freedom will have different
types of phases in their phase diagrams and, thus, different
kinds of quantum phase transitions. In our case, we find four
stable spin dipolar and quadrupolar phases, including the Néel
antiferromagnetic order, the (π, 0) collinear antiferromag-
netic phase (CAFM), the (π/2, π ) antiferromagnetic phase
(AFM*), and the (π, 0) antiferroquadrupolar phase (AFQ),
and obtain the ground-state phase diagrams. Furthermore,
we apply our theoretical results for the understanding of the
low-temperature phase diagram that has been indicated by
recent experiments of the NMR [37] and x-ray scattering [38]
measurements in pressurized FeSe. These experiments have
demonstrated that lowering temperature induces a tetragonal
to orthorhombic (OR) transition, which accompanies a mag-
netic transition.

It is important to clarify that the actual values of the
bilinear and biquadratic couplings, used in our study as free
parameters to construct the phase diagrams, could be fixed by
analyzing a higher level, and far more difficult, multiorbital
Hubbard models (see Ref. [39] and references therein) and
mapping the low-energy states into the spin-1 model used
here. While this study will be carried out in the future, we
note that in the bad-metal regime of such a multiorbital
setting, the biquadratic interaction is expected to be sizable
[40]. Thus, in the present effort generic phase diagrams of
the spin-1 bilinear-biquadratic model varying couplings in a
broad range will be presented. While future work can clarify
with precision where each particular FeSC material is located
in our phase diagram, here we focus on whether the overall
phase diagram hosts nematic phases and their transitions that
pertain to the properties of bulk FeSe.

Our paper is organized as follow. In Sec. II we intro-
duce the spin-1 bilinear-biquadratic model and describe the
computational details. Section III contains the results of the
site-factorized wave-function analysis. In Secs. IV and V we
present our DMRG results of the spin and quadrupolar struc-
ture factors, as well as the nematic order parameters. Finally,
we provide our discussions and conclusions in Sec. VI.

II. MODEL AND METHODS

Our starting point is a spin-1 bilinear-biquadratic model on
the square lattice [24,25,31–33,35], which is defined as

H =
∑
i, j

[Ji jSi · S j + Ki j (Si · S j )
2]. (1)

Here Si is a spin-1 operator at site i, which also forms the
quadrupolar operator Qi, with five independent components:
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The biquadratic term in Eq. (1) can be re-expressed as

(Si · S j )
2 = 1

2 Qi · Q j − 1
2 Si · S j + 4

3 . (3)

In addition, Ji j and Ki j are, respectively, the bilinear and
biquadratic couplings between the spins at sites i and j, with
the pair i j denoting distinct bonds on the square lattice. The
consideration of biquadratic interaction is quite necessary
for spin-1 systems. Note that the ab initio method based on
density functional theory (DFT) has been used to extract the
biquadratic couplings [26]. However, this is a challenging task
given that (i) FeSe is strongly correlated and (ii) quadrupoles,
being rank-2 objects, do not efficiently couple to the single-
particle degrees of freedom [35] that come into the DFT
approach. (For related reasons, the DFT simulation may only
study different magnetic orders, which cannot explain the
nonmagnetic phase in the FeSe.) The fact that J2 is com-
parable with J1 but K2 does not appear in the DFT results
illustrates this difficulty [26]. For a spin system with further-
neighbor dipolar interactions, it is reasonable to consider the
quadrupolar interactions as well.

Following the idea of proposing the (π, 0) antiferro-
quadrupolar order phase as the candidate of the nonmagnetic
phase in the FeSe [35], here we consider interactions beyond
nearest neighbor up to the third neighbors. For a minimal
model without loss of generality, we consider the nearest-
neighbor bilinear interaction J1 = 1 as the energy unit, with
varying second-neighbor interaction J2. In addition, we con-
sider the first three neighbors of the biquadratic interactions
to have the same strength for the purpose of simplifying the
model and reducing the number of parameters, −K1 = K2 =
−K3 = K > 0. We will demonstrate the robustness of our re-
sults by studying the cases with variations of these parameters.
For convenience, the present model will be referred to as the
J1-J2-K model. In our site-factorized wave-function analysis
and DMRG calculations, we can consider both magnetic and
nonmagnetic phases in our model Eq. (1).

For a spin-1 model possibly harboring purely magnetic
order, purely quadrupolar order, or coexisting magnetic and
quadrupolar orders, it is convenient to choose the time-
reversal invariant basis of the SU(3) fundamental represen-
tation, namely

|x〉 = i|1〉 − i|1̄〉√
2

, |y〉 = |1〉 + |1̄〉√
2

, |z〉 = −i|0〉, (4)

where we abbreviate |Sz = ±1〉 ≡ | ± 1〉 (|Sz = 0〉 ≡ |0〉)
and |1̄〉 ≡ | − 1〉. Within this basis, the site-factorized wave
functions at each site i which characterize any possible
ordered state with short-ranged correlations can be expressed
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as

|di〉 = dx
i |x〉 + dy

i |y〉 + dz
i |z〉, (5)

where dx
i , dy

i , dz
i are complex numbers and can be re-expressed

in the vector form with the basis {|x〉, |y〉, |z〉} as di =
(dx

i dy
i dz

i ). It is convenient to separate the real and imaginary
parts of di as di = ui + ivi. The normalization of the wave
function leads to the constraint di · d̄i = 1, or equivalently,
u2

i + v2
i = 1, and the overall phase can be fixed by requiring

d2
i = d̄2

i , i.e., ui · vi = 0. In a pure quadrupolar state, d will
take either a real or imaginary value, but not both, and the
associated director is parallel to the director vector d. This is
to be contrasted with a magnetic order, for which d contains
both real and imaginary components, thus yielding a dipolar
magnetic moment. Within this framework, we can determine
the spin operator from Si = 2ui × vi. In terms of the com-
ponents of d, the spin and quadrupolar operators can be
written as

Sα = −i
∑
βγ

εαβγ d̄βdγ ,

Qx2−y2 = −|dx|2 + |dy|2,
(6)

Q3z2−r2 = [|dx|2 + |dy|2 − 2|dz|2]/
√

3,

Qαβ |α �=β = −d̄αdβ − d̄βdα,

with α/β/γ = x, y, z.
In addition to the site-factorized wave-function analysis,

we also study the model Eq. (1) by the density matrix
renormalization group (DMRG) with spin rotational SU(2)
symmetry. We perform the DMRG simulations on L × 2L
cylindrical systems with L = 4, 6, 8 in the y direction. The
cylinder geometry used here has open boundary conditions
along the x direction and periodic boundary conditions along
the y direction. We keep up to 4000 SU(2) DMRG states.
In the Néel AFM and the (π, 0) collinear antiferromagnetic
phase (CAFM), the truncation error is around 10−6, while
in the (π/2, π ) AFM∗ and the (π, 0) antiferroquadrupolar
phase (AFQ) the truncation error is around 10−5. These small
truncation errors ensure us to obtain accurate DMRG results.

III. SITE-FACTORIZED WAVE-FUNCTION ANALYSIS

To explore the possible quantum phases of the model
Eq. (1), we start from an analysis based on a site-factorized
wave-function analysis [24,33,35,41]. In this framework we
can re-express the model Hamiltonian as

H =
∑
i, j

[Ji j |di · d̄ j |2 + (Ki j − Ji j )|di · d j |2 + Ki j]. (7)

In order to obtain the variational phase diagram, we should
numerically minimize the Hamiltonian above. In the present
analysis we consider four stable spin dipolar or quadrupolar
ordered phases as illustrated in Fig. 1, including the CAFM,
Néel AFM, and (π, 0) AFQ, as well as a newly discovered
magnetic phase dubbed (π/2, π ) AFM∗. Note that here we do
not consider the ferroquadrupolar order discussed in Ref. [33]
as a candidate for the nonmagnetic phase but only consider the
(π, 0) AFQ order. From the perspective of purely theoretical
explorations, the two types of quadrupolar states are both

(e)   ( /2, ) AFM*

(b)   ( , (c)   ( ,0) CAFM

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

K

J 2

( ,0) CAFM

( ,0) AFQ

AFM*
( /2, )

(a)

(d)   ( ,0) AFQ

FIG. 1. (a) Zero-temperature phase diagram of the J1-J2-K model
on the J2-K plane (J1 is set to 1). The phase boundaries are de-
termined from site-factorized wave function calculations. (b)–(e)
Schematic illustrations of the four states in (a), including Néel
AFM (b), (π, 0) CAFM (c), (π, 0) AFQ (d), and (π/2, π ) AFM∗

(e). The green arrows denote the spins. The red thin cylinders in
(e) describe the quadrupolar directors and the blue donut-shaped
objects represent the spin fluctuations which are perpendicular to the
directors.

intriguing. However, the ferroquadrupolar order itself does not
generate a nematic order.

The Néel AFM in Fig. 1(b) shows the conventional spin
pattern with the nearest-neighbor spins antiparallel to each
other. In the CAFM phase, shown in Fig. 1(c), the nearest-
neighbor spins are parallel to each other along one direction,
while they are antiparallel to each other along the other direc-
tion. The (π, 0) AFQ with staggered quadrupolar order along
one direction, as shown in Fig. 1(d), can be characterized by
having mutually orthogonal nearest-neighbor directors, i.e.,
di · d j = 0 = di · d̄ j .

The novel (π/2, π ) AFM∗, shown in Fig. 1(e), is a new
phase where the spin direction along the x axis rotates with a
commensurate period of four sites while its period along the
y axis is still two sites reflecting the wave vector (π/2, π ).
This AFM∗ state is nematic since it spontaneously breaks
the lattice C4 symmetry, by choosing between two degenerate
wave vectors q = (π/2, π ) and (π, π/2). As an illustration,
the spin configuration of the (π/2, π ) AFM∗ state along
the x axis may take the 4-site periodic pattern as {|Sz = 1〉,
|Sx = 1〉, |Sz = −1〉, |Sx = −1〉}, while the spin orientation
still takes the conventional staggered pattern along the y axis.
Importantly, in the (π/2, π ) AFM∗ phase, the q = (π, 0)
quadrupolar order parameter is nonzero as well, which is
responsible for the stability of this phase.

Within the site-factorized wave-function studies, the
energy per site of each phase can be obtained (see
Appendix B) as follows:

ENeel
AFM = 2(K1 − J1) + 2J2 + 2J3 = −2 + 2J2 − 2K,

ECAFM = K1 + 2(K2 − J2) + 2J3 = −2J2 + K,

E(π/2,π )AFM∗ = −J1 + 5

4
K1 + 1

2 K2 + K3 = −1 − 7
4 K,

E(π,0) AFQ = K1 + 2K3 = −3K.

For all energies we have neglected the constant term Ki j in
Eq. (7). Note that the SU(3) analysis was considered earlier,
in particular in Ref. [35]. It is also worth emphasizing that
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these results capture the quantum fluctuations inherent to the
S = 1 case, as discussed in some detail in Appendix B. Using
these energies, we can analytically determine the boundaries
as follows:

(1) Phase boundary between Néel AFM and (π, 0) AFQ:
K + 2J2 − 2 = 0.

(2) Phase boundary between Néel AFM and
(π/2, π ) AFM∗: K − 8J2 + 4 = 0.

(3) Phase boundary between (π/2, π ) AFM∗ and CAFM:
11K − 8J2 + 4 = 0.

(4) Phase boundary between (π/2, π ) AFM∗ and (π, 0)
AFQ: 5K − 4 = 0.

(5) Phase boundary between CAFM and (π, 0) AFQ:
2K − J2 = 0.

Using these equations, by employing the site-factorized
wave-function analysis, we obtain the variational phase dia-
gram shown in Fig. 1(a).

We would like to mention that within the site-factorized
wave-function analysis, a phase with coexistent magnetic
and quadrupolar orders at different real-space sites, dubbed
AFMQ, has been found by minimizing the energy. To our
best understanding, the AFMQ shows the same period as
that of (π/2, π ) AFM∗, but is an inhomogeneous phase
with finite magnetic and quadrupolar orders at different real-
space columns (rows). The spin pattern in AFMQ presents a
staggered pattern between magnetically ordered sites, while
the quadrupolar pattern is ferroquadrupolar (FQ), i.e., the
quadrupolar directors are all parallel to each other. The site-
factorized wave functions between the magnetically ordered
sites and the quadrupolar sites are orthogonal to each other.
Since this regime with coexisting magnetic and quadrupo-
lar orders at different columns (rows) appears between the
(π/2, π ) AFM∗ and (π, 0) AFQ, whose period is consistent
with both (π/2, π ) AFM∗ and (π, 0) AFQ, it is likely that this
phase is just a transition regime between the purely magnetic
phase and the purely quadrupolar phase. Its existence reflects
the first-order nature of the transition between the two phases,
and it is expected to be destabilized by quantum fluctuations;
this is confirmed by our DMRG calculations later. We have
therefore ignored this regime in the phase diagram displayed
in Fig. 1(a).

IV. DMRG PHASE DIAGRAMS

Our analysis so far has been semiclassical. In order to
explore the role of full quantum fluctuations and analyze the
model of Eq. (1) in an unbiased way, we have also carried
out large-scale density matrix renormalization group (DMRG)
calculations [42]. First of all, we selected four points of the
four stable phases shown in the phase diagram Fig. 1(a):
J2 = 0.4 and K = 0.6 for the Néel AFM, J2 = 1.5 and K =
0.5 for the CAFM, J2 = 1.5 and K = 0.7 for the (π, 0)
AFQ, and J2 = 0.8 and K = 0.35 for the (π/2, π ) AFM∗.
Next, we computed the spin-spin (〈Si · S j〉) and quadrupolar-
quadrupolar (〈Qi · Q j〉) correlation functions for these four
points by using DMRG on a L = 8 cylindrical geometry,
which contain the real-space spin and quadrupolar configu-
rations displayed in Fig. 2. The spin pattern of the Néel AFM
state is in Fig. 2(a); the CAFM state in Fig. 2(b) automatically
chooses the antiparallel configuration along the y direction

(b) CAFM

(c) (π,0) AFQ

(a) Néel AFM

(d) (π/2,π) AFM*

FIG. 2. (a) The spin-spin correlations for the Néel AFM state at
J2 = 0.4 and K = 0.6. (b) The spin-spin correlation for the CAFM
state at J2 = 1.5 and K = 0.5. (c) The quadrupolar-quadrupolar
correlation for the (π, 0) AFQ state at J2 = 1.5 and K = 0.7. (d) The
spin-spin correlation for the (π/2, π ) AFM∗ state at J2 = 0.8 and
K = 0.35. The green site is the reference site; the blue and red
colors denote positive and negative correlations of the sites with the
reference site, respectively. The area of circles is proportional to the
magnitude of the spin or quadrupolar correlation.

and the parallel configuration along the x direction, due to
the cylindrical geometry; the AFQ phase in Fig. 2(c) has
the antiferroquadrupolar configuration along the x direction
and the ferroquadrupolar configuration along the y direction.
In the (π/2, π ) AFM∗ phase, along the y direction the spin
configuration is antiparallel, while along the x direction the
spin pattern in Fig. 2(d) indicates that the spins are orthog-
onal between two nearest-neighbor sites. This selection of
otherwise degenerate nematic states is induced by the small
symmetry-breaking geometry of the cylinders used in DMRG.

Next we consider the evolutions of the zero-temperature
phases as a function of the biquadratic K coupling to obtain
the ground-state phase diagram for fixed J2. In order to
identify the phases we encounter, we have calculated the static
spin and quadrupolar structure factors defined as

m2
S (q) = 1

L4

∑
i, j

〈Si · S j〉eiq·(ri−r j ), (8)

m2
Q(q) = 1

L4

∑
i, j

〈Qi · Q j〉eiq·(ri−r j ), (9)

where i, j are restricted to be only partially summed over the
L × L sites in the middle of the cylinder so that the finite-size
effects are reduced [43].

Figure 3 displays the DMRG results for J2 = 1.5. Follow-
ing the scaling behavior in magnetic order states which can
be obtained from spin-wave theory, we show the order param-
eters as a function of 1/L. Note that, given the numerically
intensive nature of the DMRG calculations for an extended
parameter space, we only crudely extrapolate the data for the
finite-size scaling, which is sufficient to show whether the
order vanishes or not. The evolutions of the spin (m2

S) and
quadrupolar (m2

Q) structure factors is shown in Fig. 3(a). Here,
in the range K < 0.65, the peak at momentum q = (0, π ) of
the spin structure factor suggests the presence of the CAFM
phase, while the quadrupolar structure factor has its peak at
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(a) J2=1.5
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FIG. 3. (a) Spin (m2
S) and quadrupolar (m2

Q) structure factors
obtained from the DMRG calculations on the 8 × 16 cylinders
for J2 = 1.5. Both structure factors display dramatic changes at
K 	 0.65, indicating a phase transition from the (0, π ) CAFM to
the (π, 0) AFQ. In the (π, 0) AFQ, m2

Q exhibits a characteristic
peak at (π, 0). Finite-size scaling for the spin (b) and quadrupolar
(c) structure factors at different values of K for J2 = 1.5. For the
spin structure factor (b), the highest peak of m2

S in its momentum
distribution is shown. For the quadrupolar structure factors (c), the
intensity at q = (π, 0) is plotted. According to the scaling, the value
K = 0.65 is close to the phase boundary. Lines are guides to the eye.

q = (0, 0). On the other hand, for K > 0.65, the quadrupolar
structure factor develops a clear peak at q = (π, 0), while
the peak in the spin structure factor has melted, indicating
the (π, 0) AFQ order. Due to the cylindrical geometry, the
CAFM state automatically selects the configuration with q =
(0, π ), whereas the AFQ phase selects q = (π, 0). Further-
more, we examine the finite-size scalings of the spin (m2

S)
and quadrupolar (m2

Q) order parameters at different values of
K in Figs. 3(b) and 3(c). Upon increasing K , the spin order
parameter m2

S (0, π ) decreases and vanishes when K > 0.65.
Instead, the quadrupolar order parameter m2

Q(π, 0) develops
for K > 0.65. The behavior of both these order parameters
indicate a direct phase transition from CAFM to (π, 0) AFQ,
and K = 0.65 is roughly the location of the phase boundary
based on the finite-size scalings. Beyond the discovery of the
(π, 0) AFQ phase as a genuine ground state in [35], here we
show that the CAFM and (π, 0) AFQ appear as nearby phases
through the variation of the biquadratic couplings.

We also performed DMRG calculations at fixed J2 = 0.8,
with results in Fig. 4. At small and large values of K , the
system is in the CAFM and (π, 0) AFQ phases, respectively.
In the intermediate region there is a new magnetic phase
emerging, with a new peak in the spin structure factor m2

S
developing at q = (π/2, π ) as shown in Fig. 4(a), for ex-
ample at K = 0.35. Also, we find the peak at q = (π, 0)
for the quadrupolar structure factor m2

Q. These results are
consistent with our site-factorized wave-function analysis for
the (π/2, π ) AFM∗ order in Sec. III, which suggests the
coexistence of the (π/2, π ) magnetic and (π, 0) quadrupolar
orders. Figures 4(b) and 4(c) contain the finite-size scalings
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FIG. 4. (a) Spin (m2
S) and quadrupolar (m2

Q) structure factors
obtained from the DMRG calculations on the 8 × 16 cylinders for
J2 = 0.8. At this value of J2, m2

S displays a transition from (0, π )
CAFM, through (π/2, π ) AFM∗, and finally to (π, 0) AFQ. In
both (π/2, π ) AFM∗ and (π, 0) AFQ, m2

Q exhibits a characteristic
peak at (π, 0). Finite-size scalings for the spin (b) and quadrupolar
(c) structure factors at different values of K and at fixed J2 = 0.8. For
the spin structure factor (b), the highest peak of m2

S in its momentum
distribution is shown. For the quadrupolar structure factors (c), the
intensity at q = (π, 0) is plotted. The momentum (π/2, π ) is not an
allowed lattice vector on the 6 × 6 cluster, which is responsible for
the apparent nonmonotonic dependence of m2

S vs 1/L in the range
0.25 < K < 0.65. Lines are guides to the eye.

of spin m2
S and quadrupolar m2

Q order parameters at different
values of K . Although the momentum (π/2, π ) is not an
allowed lattice vector on the 6 × 6 cluster, and creates the ap-
parently nonmonotonic dependence of m2

S vs 1/L in the range
0.25 < K < 0.65 shown in Fig. 4(b), still the results clearly
demonstrates the nonzero values of both order parameters m2

S
and m2

Q at K ∼ 0.6 after the finite-size scaling. This signature
is less clear for smaller K , but we believe that both orders
already coexist there. As inferred from the finite-size scalings,
we find two quantum phase transitions, with the first one
happening around K 	 0.25 and the second around K 	 0.65.

We would like to mention that the particular parameter cut
in the model is for presentation purposes only. The nematic
phases actually span over large parameter regions, and the
general features of the nematic phase diagram remain the
same if we choose other fixed parameters (see Appendix A).

V. NEMATICITY

To characterize the nematicity in the different phases,
we introduce two nematic order parameters σ S

B1g and σ
Q
B1g

defined as

σ S
B1g = 1

Nm

∑
i

[〈Si · Si+x̂〉 − 〈Si · Si+ŷ〉], (10)

σ
Q
B1g = 1

Nm

∑
i

[〈Qi · Qi+x̂〉 − 〈Qi · Qi+ŷ〉], (11)
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FIG. 5. The spin and quadrupolar nematic order parameters [σ S
B1g

and σ
Q
B1g, defined in Eqs. (10) and (11)] as a function of K at (a) J2 =

1.5 and (b) J2 = 0.8, using L = 6, 8 cylinders.

where x̂ and ŷ denote the unit length vectors along the x
and y directions, respectively, and Nm is the number of sites
of the two columns in the middle of the cylinder. Analyses
of these nematic order parameters have been shown efficient
to determine the lattice rotational symmetry breaking in the
DMRG calculations on the cylinder geometry [44]. The abso-
lute value of the nematic order parameters as a function of K
at J2 = 1.5 and 0.8 are, respectively, presented in Figs. 5(a)
and 5(b). Comparing σ S

B1g and σ
Q
B1g clarifies whether the

antiferromagnetic or antiquadrupolar fluctuations dominate
the contributions to the nematic order. We find σ S

B1g dominat-

ing over σ
Q
B1g inside the CAFM phase [K � 0.65 (0.25) for

J2 = 1.5 (0.8)], and vice versa inside the (π, 0) AFQ phase
(K � 0.65 for both values of J2). We also notice that the
crossings of the two nematic order parameters occurs exactly
at the location where the quadrupolar order at q = (π, 0)
develops. This reflects the different types of fluctuations that
are responsible for the nematic order on the two sides of
the quantum phase transition. For J2 = 1.5, the crossing is
at the boundary between CAFM and (π, 0) AFQ, while for
J2 = 0.8 this crossing occurs at the boundary between CAFM
and (π/2, π ) AFM∗.

Finally, we show the finite-size scaling for the nematic
order parameters σ S

B1g and σ
Q
B1g of the four phases in Fig. 6.

In the Néel AFM state, although there are small values of
nematicity, due to the cylindric geometry used in the DMRG
calculations, both σ S

B1g and σ
Q
B1g decay fast and vanish with

increasing size. For the other three phases, the finite-size
scaling clearly indicates the presence of nonzero nematic
orders in the thermodynamic limit.

VI. DISCUSSIONS AND CONCLUSIONS

We now discuss the implications of our results for the iron
chalcogenides. Our work leads to a possible understanding of
the properties of FeSe based on the presented phase diagram
in Fig. 1(a). For clarity, we show a schematic phase diagram
of the nematic phases in the inset of Fig. 7. Note that applying
pressure increases the kinetic energy without affecting the
local interactions as much and, thus, amounts to increasing w,
the coherent electron spectral weight. Qualitatively comparing

1/L
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σ
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1
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−σ
Q B

1
g

FIG. 6. The finite-size scaling of nematic order parameters σ S
B1g

(a) and σ
Q
B1g (b) for the Néel AFM state at J2 = 0.4 and K = 0.6, for

the CAFM state at J2 = 1.5 and K = 0.5, for the (π, 0) AFQ state at
J2 = 1.5 and K = 0.7, and for the (π/2, π ) AFM∗ state at J2 = 0.8
and K = 0.35. The lines are guides to the eye.

the ambient-pressure FeSe with the pressurized FeSe is simi-
lar to comparing the ambient-pressure FeSe with the typical
iron arsenides. Because the ambient-pressure FeSe is more
strongly correlated than the latter, it is expected to be more
frustrated and, correspondingly, having a larger K/J ratio.
In other words, under pressure, K/J should decrease, which
is the parameter trajectory we have proposed in Fig. 7 for
FeSe as a function of pressure. More microscopically, a non-
perturbative procedure for calculating the effective exchange
interactions in the bad metal regime has been developed using
the slave-boson-type approach [45]. Here the bilinear spin-
exchange interaction J is given by a two-boson process and
turns out to be (1 − w)Jc, where w denotes the percentage
of the physical electron spectral weight that resides in the
coherent part near the Fermi energy and Jc is the exchange
interaction at the delocalization-localization transition (i.e.,
when w → 0+). A similar procedure for the biquadratic inter-
action implies that it is given by a four-boson process, and will
be on the order of (1 − w)2Kc. Thus, K/J is expected to be
proportional to (1 − w). Because applying pressure enhances

Te
m

pe
ra

tu
re

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

OR

Pressure

?

K

J 2

(π,0)CAFM

(π,0)
AFQ

(π/2,π)
 AFM*

OR+Magnetic

FIG. 7. The pressure-temperature phase diagram inferred from
our theoretical phase diagram [illustrated in the inset, based on
Fig. 1(a)]. There are two possible sequences of quantum phase
transitions from the (π, 0) AFQ phase presumably stable at ambient
pressure towards the high pressure CAFM (π, 0) phase, as illustrated
by the arrows in both the main panel and the inset.
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the coherent electron spectral w, it is expected to lead to a
decrease in K/J .

Thus, pressurizing FeSe may amount to taking a horizontal
cut in this phase diagram: we propose two such cuts as
candidates for the parameter tuning, which are also illustrated
in the inset of Fig. 7. The resulting phase diagram is illustrated
in the main panel of Fig. 7, with the system undergoing
either a direct transition between the (π, 0) AFQ and CAFM
states, or a transition between them through an intermedi-
ate (π/2, π ) AFM∗ regime with coexistence of magnetic
and quadrupolar orders. This phase diagram is qualitatively
similar to that inferred from recent experiments. While the
presence of AFM order at pressures of the order of 2 GPa
had been indicated before [46], recent NMR measurements
[37] have provided strong evidence that the order achieved by
increasing pressure breaks the C4 symmetry and has a (π, 0)
wave vector. The x-ray scattering experiments [38] have also
provided evidence that a C4 symmetry breaking accompanies
the magnetic ordering. There are indications in the existing
experiments for two stages of phase transitions under pressure
[46–49], with the onset of AFM order around p1 ≈ 0.8 GPa
and a change of the magnetic structure around p2 ≈ 1.2 GPa
[46]. Additional NMR and neutron scattering measurements
in the intermediate pressure range 0.8 � P � 1.7 GPa are
especially needed to clarify this issue and ascertain which
of the two proposed sequences applies. We reiterate that the
set of model parameters we choose is for the purpose of
illustrating the phase transitions in Fig. 7. The nematic phases
and the transitions actually span over a large parameter regime
in the overall phase diagram, which underscores the fact that
the proposed physical picture is robust instead of fine tuned.

Regardless of which of the two phase transition sequences
is realized, our results have important implications for the
single-electron excitations. The (π, 0) AFQ state contains two
order parameters. The rank-2 AFQ order parameter does not
efficiently couple with the (coherent) conduction electrons
near the Fermi surface and, therefore, will not cause a recon-
struction of the Fermi surface. However, the nematic order
parameter, σ S

B1g and σ
Q
B1g defined in Eqs. (10) and (11), will

linearly mix with the occupancy difference in the 3dxz and 3dyz

orbitals, thereby generating a splitting of the electronic bands
and a distortion of the Fermi surface. All these features are
consistent with the observations by the ARPES experiments
[16–18,23]. Likewise, the (0, π ) CAFM state contains two
order parameters. While the nematic order parameter acts
similarly as in the AFQ case, distorting the Fermi surface,
the AFM order is very different from the AFQ order: it
provides a spatially modulated and spin-dependent potential
for the conduction electrons, thereby reconstructing the Fermi
surface. Thus, our proposed quantum phase transitions will
be accompanied by drastic changes in the geometry of the
Fermi surfaces. This is consistent with the dramatic evolution
of the Fermi surface recently reported in the Shubnikov–de
Haas (SdH) oscillation measurements on FeSe [50].

To summarize, the present work has advanced two key re-
sults. First, by considering the interplay between the frustrated
magnetic interactions, we establish a quantum phase diagram
in which the (nonmagnetic) (π ,0) antiferroquadrupolar order
is robustly located near the (π, 0) collinear antiferromagnetic
order and an intervening (π/2, π ) antiferromagnetic phase,

all of which break the C4 symmetry and thus promote a
nematic order. Second, this theoretical result provides the
basis to understand qualitatively the quantum phase transi-
tion of FeSe under pressure. The similarity of the quantum
phase transitions we have identified in the frustrated bilinear-
biquadratic model with the experimental observations pro-
vides evidence that a similar type of spin physics is important
for the emergence of superconductivity in both iron chalco-
genides and iron pnictides. This is not to say that the orbital
degrees of freedom are decoupled. As discussed above, the
nematic order of the spin quadrupolar or dipolar orders will
be coupled to the orbital order. Nonetheless, the interactions
among the spin degrees of freedom, as described in Eq. (1),
will give rise to superconducting pairing in FeSe—and by
extension in other iron chalcogenides—in a similar way as
they do in the iron pnictides. Thus, our results not only
contribute to the understanding of recent experiments in FeSe,
but also provide evidence for a common origin of supercon-
ductivity across the extensive material classes of iron-based
superconductors. More generally, our findings suggest the
importance of correlation-induced short-range spin exchange
interactions for both the normal state and superconductivity in
the iron chalcogenides. This provides a new linkage between
the superconductivity of the highest Tc iron-based families
with that arising in a broad array of strongly correlated
electron systems, including the cuprates and heavy fermion
metals.
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APPENDIX A: ADDITIONAL DMRG PHASE DIAGRAMS

We have performed the site-factorized wave-function
analysis and DMRG simulations for additions parameter
sets, with results for (K1 = −K, K2 = 0.9K, K3 = −0.7K )
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FIG. 8. (a) Phase diagram of the J1-J2-K1-K2-K3 model with K1 = −K, K2 = 0.9K, K3 = −0.7K (K > 0) on the J2-K plane (J1 is set to
1.0). The phase boundaries are determined from site-factorized wave-function calculations. (b) Spin (m2

S) and quadrupolar (m2
Q) structure

factors obtained from DMRG calculations using 8 × 16 cylinders for J2 = 1.5 with K1 = −K, K2 = 0.9K, K3 = −0.7K . (c) Finite-size scaling
for the spin structure factor, at the highest peak of m2

S in its momentum distribution, is shown. (d) Finite-size scaling for the quadrupolar
structure factors with the intensity at q = (π, 0) being plotted. According to the scaling, K = 0.8 is close to the phase boundary. The lines are
guides to the eye.

shown in Fig. 8 and for (K1 = −K, K2 = 0.7K, K3 = −0.5K )
shown in Fig. 9. In both cases we have chosen J1 = 1
and J2 = 1.5 for the DMRG calculations. From the finite-
size scalings of the spin (m2

S) and quadrupolar (m2
Q) or-

der parameters, we find direct phase transitions between

the CAFM and (π, 0) AFQ phases for both cases, and the
transition points are around K = 0.8 for the parameter set
(K1 = −K, K2 = 0.9K, K3 = −0.7K ) and K = 1.1 for (K1 =
−K, K2 = 0.7K, K3 = −0.5K ). These results suggest that the
nematic phases actually span over large parameter regions
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for the spin structure factor, at the highest peak of m2
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in the phase diagram, and the general features of the ne-
matic phase diagram and relation to experiments remain
qualitatively the same as described in our conclusions of the
main text.

APPENDIX B: GROUND-STATE ENERGY IN THE
SITE-FACTORIZED WAVE-FUNCTION APPROXIMATION

Within the site-factorized wave-function approximation of
the SU(3) representation, the ground-state energy per site of
a certain ordered phase in the S = 1 model can be readily de-
termined. Here we show how this works for the (π, 0) CAFM
state, with particular emphasis on the quantum contributions.
The generalization to other states is straightforward.

Denote the two sublattices of the CAFM state to be A and
B, respectively. Without losing generality, we assume the local
wave functions on these two sublattices to be

|�A〉 = |1〉 = 1√
2

(−i|x〉 + |y〉),

|�B〉 = |−1〉 = 1√
2

(i|x〉 + |y〉). (B1)

The corresponding directors are, respectively,

dA =
(

− i√
2
,

1√
2
, 0

)
,

dB =
(

i√
2
,

1√
2
, 0

)
. (B2)

This gives

dA · dB = 1, dA · d̄B = 0 (B3)

for the antiferromagnetically coupled bond, and

dA · dA = 0, dA · d̄A = 1 (B4)

for the ferromagnetic coupled bond. For the CAFM state,
a site connects to one AFM and one FM nearest-neighbor
bonds, two AFM next-nearest-neighbor bonds, and two FM
third-nearest-neighbor bonds on average. Following Eq. (7),
one gets the energy per site for the CAFM phase to be

ECAFM = −2J2 + 2J3 + K1 + 2K2 = −2J2 + K, (B5)

when neglecting the constant term Ki j in Eq. (7). The contribu-
tion from the constant term is 2(K1 + K2 + K3) = −2K , and
this shifts the energy to E ′

CAFM = −2J2 + 2J3 + 3K1 + 4K2 +
2K3 = −2J2 − K .

Note that this energy is higher than the energy per site
of the CAFM state in the classical limit, Ec

CAFM = −2J2 +
2J3 + 2K1 + 2K2 + 2K3 = −2J2 − 2K . The reason is as fol-
lows. In the classical limit, 〈(SA · SB)2〉 = 〈(Sz

ASz
B)2〉 = 1 for

an AFM bond. But in the SU(3) representation of the S = 1
model, one can show that for the AFM bond 〈(SA · SB)2〉 =
〈(Sz

ASz
B)2 + S+

A S−
B S−

A S+
B /4〉 = 2. The larger value comes from

the transverse correlation S+
A S−

B S−
A S+

B /4 and reflects the in-
herent quantum mechanical nature of the AFM state. Note
that there are one nearest neighbor and two next-nearest-
neighbor AFM bonds in the CAFM state, therefore the energy
difference between the S = 1 case and the classical limit is
E ′

CAFM − Ec
CAFM = K1 + 2K2 = K . By contrast, for any FM

bond, the transverse corrections vanish.
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