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Emergence of superconductivity in doped multiorbital
Hubbard chains
Niravkumar D. Patel1, Nitin Kaushal2,3, Alberto Nocera2,4, Gonzalo Alvarez5 and Elbio Dagotto 2,3✉

We introduce a variational state for one-dimensional two-orbital Hubbard models that intuitively explains the recent computational
discovery of pairing in these systems when hole doped. Our ansatz is an optimized linear superposition of
Affleck–Kennedy–Lieb–Tasaki valence-bond states, rendering the combination a valence-bond liquid dubbed orbital resonant
valence bond. We show that the undoped (one-electron/orbital) quantum state of two sites coupled into a global spin singlet is
exactly written employing only spin-1/2 singlets linking orbitals at nearest-neighbor sites. Generalizing to longer chains defines our
variational state visualized geometrically expressing our chain as a two-leg ladder, with one orbital per leg. As in Anderson’s
resonating valence-bond state, our undoped variational state contains preformed singlet pairs that via doping become mobile,
leading to superconductivity. Doped real materials with one-dimensional substructures, two near-degenerate orbitals, and
intermediate Hubbard U/W strengths—W the carrier’s bandwidth—could realize spin-singlet pairing if on-site anisotropies are
small. If these anisotropies are robust, spin-triplet pairing emerges.
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INTRODUCTION
Quantum materials merge topological concepts1, as in Haldane
chains with non-local order parameters2,3, with electronic correla-
tion effects, as in iron-based superconductors with robust
Hubbard U and Hund JH couplings4–6. The Haldane chain started
the field of topological materials and some physical realizations
are CsNiCl3

7, AgVP2S6
8, NENP9, and Y2BaNiO5

10. These chains have
a spin gap and protected edge states for OBCs (open boundary
conditions)3,11,12. In iron- and copper-based superconductors,
most efforts employ planar geometries. However, Cu-oxide two-
leg ladders were widely studied when they were predicted and
confirmed to have a spin gap and superconduct13–19. Recently,
analogous developments occurred in iron ladders BaFe2S3

20–22

and BaFe2Se3
23–25 that become superconducting with pressure

and display complex properties20–24,26–36. However, similar efforts
in iron chains, TlFeSe2 or TlFeS2, are more limited37,38.
Within quantum materials, quasi-one-dimensional (1D) ladders

and chains are attractive because powerful computational
techniques, such as the density matrix renormalization group
(DMRG)39,40 and Lanczos41, allow for the study of model
Hamiltonians with accuracy. This removes the veil of theoretical
uncertainty in higher dimensions that complicates the comparison
theory vs. experiment. In particular, this 1D avenue may allow for
the challenging study of systems where both topology and
correlations are simultaneously relevant.
In this context, there are few studies of the effects of hole

doping and magnetic-based hole pairing on topological interact-
ing systems. Early work in the t–J limit (no double occupancy) for
doped S= 1 chains, indicated a narrow region of pairing,
suppressed by competing ferromagnetism42. In related work,
triplet superconductivity was also analyzed in 1D43,44. More recent
efforts using multiorbital Hubbard models unveiled robust
tendencies to spin-singlet pairing, an exciting result45,46. However,

these valuable computational efforts did not provide a concrete
mechanism as an explanation. In particular, we lack a simple
intuitive picture connecting the topological properties of Haldane
chains and the emergence of hole pairs in Hubbard models.
Developing such a simple “cartoon” may allow generalizations to
other systems and also facilitate the experimental search for
realizations in particular materials.
Here we fill this conceptual gap. Our main conclusion is

illustrated in Fig. 1. We consider the two-orbital Hubbard model
on a chain (Fig. 1a), using the two orbitals a and b as legs of a
mathematically equivalent two-leg ladder (Fig. 1b). We rely on a
hereby proposed variational state: the orbital generalization of the
resonating valence-bond concepts47. We employ preformed spin-
1/2 singlets as in the original formulation, but now in the enlarged
space spanned by the real chain in one direction and the orbital
index in another (Fig. 1c). More simply, our state—the orbital
resonant valence bond (ORVB)—is an optimized linear combina-
tion of Affleck–Kennedy–Lieb–Tasaki (AKLT) valence-bond
solids3,48,49, rendering the proposed state a liquid. Doping this
state with two holes in principle could break two singlets. But
when holes are close to one another, they break only one singlet
minimizing the energy and leading to an effective singlet hole
pairing (Fig. 1d), in agreement with computational results45,46. Our
undoped and doped states are variational, not exact, but they
capture the essence of the problem, as shown below.
Our conclusions are not obvious: naively there are preformed

triplets at each site because of the robust JH/U. Actually, we found
that triplet pairing—a rarity50,51—becomes stable when easy-
plane anisotropies are not negligible. However, doping particular
quasi-1D materials—with two active fairly equivalent orbitals and
weak spin anisotropy—should lead instead to singlet pairing.
The present effort for two-orbital chains has qualitative

implications for other multiorbital systems, such as iron-based
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superconductors. More specifically, our results, and the hole
binding found in multiorbital ladders33, show that magnetic
fluctuations induce pairing in repulsive Hubbard models. In this
framework, these efforts are as important as the theoretical
studies of Cu ladders in the 1990s13,15: if pairing occurs convin-
cingly in 1D systems, the same Hamiltonian may induce analogous
tendencies in higher dimensions where many-body techniques
are not as accurate.

RESULTS
Model
We use a canonical two-orbital Hubbard model with kinetic
energy and interaction terms written as H= HK+ HI+ HD. The
tight-binding portion is

HK ¼
X
iσγγ0

tγγ
0
cyiγσciþ1γ0σ þ h:c:

� �
; (1)

where cyiγs (ciγσ) creates (destroys) an electron at site i of a chain,
orbital γ (a and b in our case, although our Hamiltonian notation is
generic for arbitrary number of orbitals), and spin projection σ.
The nearest-neighbor (NN) electron hopping is here a 2 × 2
orbital–space unit matrix, that is, t γγ′= t δγγ′, with t the energy
unit throughout the publication. The non-interacting bandwidth is
W= 4.0t. The hopping symmetry between the two orbitals, and
the absence of crystal-field splitting, prevents the appearance of
the orbital-selective Mott physics recently studied in related
multiorbital models52–54.
The electronic interaction is standard for multiorbital fermionic

systems55:

HI ¼ U
X
iγ

niγ"niγ# þ U0 � JH
2

� �X
iγ<γ0

niγniγ0 � 2JH
X
iγ<γ0

SiγSiγ0 þ JH
X
iγ<γ0

PyiγPiγ0 þ h:c:
� �

:

(2)

The first term is the intra-orbital Hubbard repulsion U. The second
contains the inter-orbital repulsion at different orbitals, with the
usual relation U′= U – 2JH due to rotational invariance. The third
term involves the Hund’s coupling JH, and the last term represents
the on-site inter-orbital electron–pair hopping ðPiγ0 ¼ ciγ0"ciγ0#Þ.

Later it will also be important to incorporate an easy-plane
anisotropy component (D > 0):

HD ¼ D
X
i

ðSzia þ SzibÞ2: (3)

The spin-1/2 operators (Sx, Sy, Sz) are defined as Sαiγ ¼
1
2

� �P
σσ0 c

y
iγσσ

α
σ;σ0ciγσ0 via Pauli matrices. For our results, we used

the Lanczos method as well as DMRG, with up to m= 1800 states
and truncation errors below 10−6 as in previous investigations45.

Undoped two-orbital Hubbard model at intermediate U/W vs.
Haldane state
We focus on multiorbital models in iron-based superconductors
where ladders and chains can be synthesized, but our results are
valid for other transition metal compounds. Iron superconductors
are “intermediate” between weak and strong coupling, and U/W ≈
1 is considered realistic4–6. Because the iron family is not at U/W »
1, a pure spin model is not appropriate and interacting itinerant
fermions must be used.
Consider first whether the model discussed here—with mobile

electrons, intermediate U/W, and hopping unit matrix—is
smoothly connected to the Haldane limit. At one particle per
orbital and U/W » 1—with concomitant growth of JH fixed at the
often used ratio JH/U= 1/45,56—our model certainly develops S=
1 states at every site, antiferromagnetically Heisenberg coupled.
To analyze if intermediate U/W ≈ 1 and strong coupling U/W » 1
(with S= 1 spins on-site) are qualitatively similar, we compute
with DMRG the entanglement spectra (ES)57. For example, at
U/W= 1.6 where hole binding is maximized (see below), Fig. 2a, b
indicates that increasing JH/U the Hubbard ES clearly resembles
the S= 1 chain ES58.
However, our model is not merely a S= 1 chain: the inset of Fig.

2c indicates that the von Neumann entropy59–61 SVN converges to
ln(2) (S= 1 chain result) only at U/W ≈ 5 and beyond. At typical
couplings of iron compounds, SVN is approximately double the U/
W » 1 limit. Thus, the two-orbital Hubbard model qualitatively
resembles the Haldane chain, but at U/W ≈ 1 there are quantitative
differences likely caused by non-negligible charge fluctuations.
Consider now the evolution increasing D/t. Recent work found a

transition between the gapped Haldane region and a gapped
state with trivial topology46. In Fig. 2c indeed SVN at fixed U/W=
1.6 and JH/U= 0.25 does not evolve smoothly from D/t= 0—
connected to the large U/W Haldane limit—to the anisotropic
large D/t “XY” limit. The ground state in this limit has a spin triplet
with zero z-projection at every site, and no edge states. At 0.1 < D/
t < 0.2, an abrupt change occurs and eventually SVN→ ln(1) as D/t
grows, compatible with a product state of zero z-projection triplets
[see discussion below, Eq. (4)].
In summary, although with quantitative differences, the

undoped Hubbard model qualitatively resembles the Haldane
chain as long as D/t does not cross a threshold beyond which
edge states disappear and a topologically trivial regime develops.

Pairing in the doped two-orbital Hubbard model
Our main focus is why pairing occurs and why in the channel it
occurs. However, before addressing these issues, let us review and
extend recent studies about hole–pair formation and pair–pair
correlations in the doped two-orbital Hubbard model. This analysis
will provide hints for the intuitive explanation. In Fig. 3a the two-
hole binding energy vs. U/W is shown, parametric with JH/U. This
binding energy is defined as ΔE= E(2)− E(0)− 2[E(1)− E(0)], with
E(M) the ground-state energy with M holes (zero holes refers to
the half-filled state with one electron per orbital). When ΔE
becomes negative, it signals a two-hole bound state. Clearly,
Fig. 3a indicates pair formation with maximum |ΔE| at 1<U/W<2, as
in ref. 45, and growing with increasing JH/U (note JH/U should

Fig. 1 Summary main results. a Sketch of a chain with two active
orbitals a and b. b Representation of a splitting the orbitals into legs
forming a fictitious two-leg ladder, with legs only connected by the
Hund coupling JH. c One component of the variational state
proposed in the text. Arrows indicate spin-1/2 singlets linking
nearest-neighbor sites. Although their spin is zero, they are oriented
objects because singlets are antisymmetric under the exchange of
spins. The full ORVB state is an optimized linear combination of all
possible arrangements of these singlets, that is, a linear combination
of AKLT valence-bond solids. d Doped state: holes “h” are effectively
paired when a spin singlet is removed.
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be <1/3 to remain smaller than U′/U due to the constraint U′= U
− 2JH). At U/W » 1, ferromagnetism for 1 and 2 holes—see
“Discussion” below—prevents pairing, suggesting that directly
doping the S= 1 chain is not the proper theoretical approach. In
Fig. 3b we show new results, now increasing D/t at fixed JH/U=
0.25. Robust pairing is observed again. However, while the binding
curves are almost identical at D/t= 0.0 and 0.2, at larger D/t they
rapidly increase in magnitude. This reflects qualitative differences
in pairing, compatible with the von Neumann analysis increasing
D/t in Fig. 2c that indicated a topological change in the same D/t
range.
The qualitative transition in Fig. 3b also occurs in Fig. 3c, d

where pairing correlations are shown. At D/t= 0 and JH/U= 0.25,
that is, doping a region smoothly connected to the Haldane chain,
spin-singlet pairing dominates (triplet is exponentially sup-
pressed). With increasing D/t at fixed hole density x, a transition
from singlet to triplet dominance is observed. For example, in
Fig. 3d we observe that spin-triplet pairing, heavily suppressed at
D/t= 0, instead dominates as D/t increases (while singlet is
exponentially suppressed).
The “global summary” in Fig. 4 is based on a large set of DMRG

data. It contains a phase diagram varying D/t and doping x, with
only a few representative points displayed. The red region
near x= 0 and D/t= 0 is where the model resembles the Haldane
state according to the entropy entanglement. Here, at light
doping x singlet pairing dominates at intermediate U/W, but
eventually other non-superconducting channels [spin density

wave (SDW) and charge density wave (CDW)] take over as x
grows. Increasing D/t, at small x a transition from singlet- to triplet-
dominated pairing occurs. In the singlet regime, holes are primarily
located at NN sites and different orbitals, while in the triplet regime
they are primarily at the same site in different orbitals.
The DMRG results unveiled a parameter space region (small D/t,

low hole doping, intermediate U/W, and robust JH/U) where
superconducting spin-singlet correlations dominate. These results
are surprising. First, the connection with the S= 1 chain suggests
that antiferromagnetic (AFM) fluctuations are short range and
perhaps not sufficiently strong for pairing. Second, at every site
and at intermediate–strong U/W, a nonzero magnetic moment
develops due to JH/U. Naively, these same-site electrons can be
considered as local preformed triplets. Then, after hole doping the
resulting ground state could be envisioned as these triplets
becoming mobile. For D/t > 0.2, this naive perspective is
compatible with numerical results in Fig. 4. However, better
understanding the on-site spin-triplet pairing will require further
work because in principle a Hund coupling JH/U= 1/4 is not
sufficient to overcome the inter-orbital repulsion. The anisotropy
D, which influences on the energy, seems important to stabilize
the triplet pairing as our computational results indicate. The
product-state wave function Eq. (4) is a good variational
approximation (undoped system), exact as D diverges:

TPSj i ¼
YN
i

1; 0j ii ¼
YN
i

1ffiffiffi
2

p "ia; #ibj i þ #ia; "ibj ið Þ: (4)

Then, why singlets dominate at small D/t? Although in a Haldane
regime all triplet correlations must decay exponentially, such
reasoning does not explain why singlet pairing is enhanced. Hints
for the variational state presented below arise from the AKLT exact
solution3,48,49, where a S= 1 spin model was considered employing
two auxiliary idealized S= 1/2 degrees of freedom at every site.
These auxiliary states form spin singlets with other S= 1/2 auxiliary
states at the next site. Below, we show that the two-orbital Hubbard
model shares properties similar to this intuitive idea.

Variational state for the undoped two-orbital Hubbard chain
We now introduce a variational state for both the undoped and
lightly doped two-orbital Hubbard chain, at intermediate and
strong U/W. We argue that these ground states can be
qualitatively described in terms of S= 1/2 spin singlets involving
NN sites, connecting the same or different orbitals. Our main result
is that the small D/t region of the two-orbital Hubbard model has
hidden “preformed” singlets that become mobile with doping.
Knowing what type of Hubbard model develops pairing, and with
what type of hoppings, allow us to predict what characteristics a
material must display to realize this physics.
We propose a variational state inspired by an exact equality.

Consider first only two sites, say 1 and 2, and construct the
quantum global spin-zero state using one electron per orbital.
With only one orbital this has the canonical expression:

SingletS¼1=2 2�sites

			 i ¼ 1ffiffiffi
2

p 1=2; 1=2j i1 1=2;�1=2j i2 � 1=2;�1=2j i1 1=2; 1=2j i2ð Þ

¼ 1ffiffiffi
2

p "1#2j i � #1"2j ið Þ;

where |1/2,1/2〉means total spin-1/2 and z-projection ↑, and so on.
For two spins 1, the global spin-zero state is still relatively

simple

SingletS¼1 2�sitesj i ¼ 1ffiffiffi
3

p 1; 1j i1 1;�1j i2 þ 1;�1j i1 1; 1j i2 � 1; 0j i1 1; 0j i2ð Þ:

(5)

Because in our case each site S= 1 arises from two real S= 1/2
electrons at each orbital and same site, we use the 1; 1j i1 ¼
"1a"1bj i; 1;�1j i1 ¼ #1a#1bj i; 1; 0j i1 ¼ 1=

ffiffiffi
2

p� � "1a#1bj i þ #1a"1bj ið Þ

Fig. 2 Entanglement spectra. a The undoped two-orbital Hubbard
chain vs. JH/U, at U/W = 1.6. b The S= 1 Heisenberg chain (both at D/
t= 0). At robust JH/U in a, a two-fold degeneracy is clear in both
cases. c Von Neumann entanglement entropy (SVN) for the undoped
two-orbital chain model vs. D/t, at U/W= 1.6 and JH/U= 0.25. Inset:
SVN vs. U/W for D/t= 0 and various JH/Us showing convergence to
the ln(2) of the S= 1 chain at U/W » 1. The DMRG results in a–c use
OBC N= 100 sites, both for Hubbard and Heisenberg S= 1 models.
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notation and an analogous expression at site 2. Then, simple
algebra leads to

SingletS¼1 2�sitesj i ¼ 1ffiffi
3

p "1a; "1b; #2a; #2bj i þ #1a; #1b; "2a; "2bj ið Þ
� 1

2
ffiffi
3

p #1a; "1b; "2a; #2bj i þ "1a; #1b; #2a; "2bj ið
þ "1a; #1b; "2a; #2bj i þ #1a; "1b; #2a; "2bj iÞ: (6)

What is remarkable is that this last expression can be exactly
rewritten as a combination of S= 1/2 singlets, involving either
different or the same orbitals:

SingletS¼1 2�sitesj i ¼ �1ffiffiffi
3

p
1ffiffi
2

p "1a; #2b � #1a; "2bj i 1ffiffi
2

p "1b; #2a � #1b; "2aj i
� 1ffiffi

2
p "1a; #2a � #1a; "2aj i 1ffiffi

2
p "1b; #2b � #1b; "2bj i

" #
:

(7)

Intuition is gained when this result is represented visually (Fig. 5),
where we have rewritten exactly Eq. (7) doubling the number of
valence-bond states for an easier extrapolation to more sites
(using the total spin at each site Si= Sia+ Sib, the identity
(Sia+ Sib) · (Sia+ Sib)= Sia · Sia+ Sib · Sib+ Sia · Sib+ Sib · Sia also
helps in this context).
Our exact result is counterintuitive: with perfect S= 1 states at

each site, the total spin-zero state of the two-orbital two-site
Hubbard model can be represented exactly as a linear combina-
tion of S= 1/2 singlets. This resembles the original AKLT
perspective3, although here applied to a fermionic system. Fig. 5
is as in the views of Anderson47 and Affleck et al.3, but with
orbitals as legs of a two-leg ladder, with these legs only connected
by JH (no inter-leg hopping).
Then, intuitively, as in the AKLT states, the undoped state has

preformed S= 1/2 singlet pairs in all possible arrangements that
upon doping should become mobile, leading to spin-singlet
pairing dominance. Thus, we predict that doping real quasi-one-

dimensional materials with two dominant nearly degenerate
orbitals should lead to superconductivity in the spin-singlet
channel if anisotropies are not large. We need two “similar”
orbitals because we used a 2 × 2 unit hopping matrix.
How is this generalized to more sites? The two-site exact result

in Fig. 5 assuming periodic boundary conditions (PBCs) establishes
a rule: at each elementary 2 × 2 plaquette only one singlet can be
used, either along a diagonal or along a leg. Each ladder site S= 1/
2 can be used only once: after forming a singlet they disappear
from the picture. The two-site example has other properties
common to a longer chain. The global singlet state is even under
the exchange of orbitals a and b and also even under a reflection
with respect to the middle of the plaquette. Now extending to
more sites becomes natural. For example, in Fig. 6 we show the 16
valence-bond states needed for four sites using PBCs, as well as
the “representative” of each class (i.e., applying to a representative
translations and orbital exchange, the full original class can be
reconstructed). We remark again that, by construction, all states
have perfect S= 1 spins at every site, as in the AKLT setup, even
using spin-1/2 singlets as building blocks.

Lanczos overlaps
How accurate is this state? Using Lanczos, we calculated the
normalized exact ground-state GS of the two-orbital Hubbard
model in short chains and computed the overlap with the ORVB
linear combination of the individual AKLT-like states of Fig. 6. The
coefficients for each class were optimized to maximize the global
overlap, arriving to a final normalized-to-one state-dubbed ORVB.
Care must be taken because the individual AKLT components do
not form an orthogonal set. By this procedure, at U/W= 20 and

Fig. 3 Binding and pairing. Binding energy ΔE/t vs. U/W for various values of a JH/U, at D/t= 0, and b D/t, at JH/U= 0.25. In a, b, a 16-site OBC
chain was used and DMRG. c Spin-singlet ΔS real-space pair–pair correlations P(R) vs. distance R, varying JH/U, at fixed U/W= 1.6 and D/t= 0.
ΔS involves nearest-neighbor sites and different orbitals. d Same as c but using the on-site triplet operator ΔT, varying D/t, at fixed U/W= 1.6
and JH/U= 0.25. In c, d, a 48-site OBC chain was used and DMRG, neglecting eight sites at each end to avoid edge effects. Correlations are
normalized to the result at distance 2, P(2), to better focus on the large R behavior. For the definition of ΔS and ΔT, see “Methods”. At c the hole
doping is x= 0.042 corresponding to four holes, while at d x= 0.083 corresponding to eight holes. x is the number of holes divided by 96
(48 sites, 2 orbitals). For completeness, we repeated several ΔE/t calculations in a, b removing the electron–pair hopping term from Eq. (2) to
avoid the impression that this term, arising from Coulomb energy matrix levels55, may cause the binding. In all cases studied, the binding
curves were barely affected by removing the electron–pair hopping.
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2 sites, |〈ORVB|GS〉| is virtually 1, because double occupancy is
much suppressed, as in Eq. (7). Using four sites, the binding
energy is now optimized at U/W= 4. At this coupling and size, |
〈ORVB|GS〉|= 0.95, indicating that ORVB state is a good repre-
sentation of the ground state.
We extended to more sites using PBCs. As already explained,

below when “classes” are mentioned for the undoped case, they
represent groups of valence-bond states related by applying
translations and orbital exchange to a particular representative.
For six sites, there are eight classes and at U/W= 2, where binding
is maximized, the overlap is 0.79. As the lattice size grows, other
configurations involving longer S= 1/2 singlets and especially
doubly occupied orbitals will contribute to the ground state
because the optimal U/W where binding is maximized is reduced
towards the intermediate range. But finding a robust 0.79 overlap
with six sites indicates that ORVB is a good variational state. The
same occurs for eight sites: here the number of classes is 16, and

when U/W= 1.5 is chosen because it optimizes the binding
energy, the overlap |〈ORVB|GS〉| remains robust at 0.61. Increasing
the system size, the optimal binding converges to intermediate
U/W (see Fig. 3).
Should we worry about a reducing overlap with increasing size?

As example consider the simple (π,π) spin staggered state
staggj i ¼ "#"# :::j i of the S= 1/2 Heisenberg model two-
dimensional square lattice. For a 2 × 2 cluster, its overlap with
the true ground state is 0.58, but for the 4 × 4 cluster, it decreases
to 0.29. However, staggj i is certainly a good variational state. A
reducing overlap is natural because with increasing cluster size,
the fraction of the total Hilbert space spanned by simplified
variational states—such as proposed here for two orbitals or the
spin staggered state for Heisenberg models—rapidly decreases.
Thus, after confirming the overlap is robust for small clusters, what
matters more is whether the proposed state captures the essence
of the ground state, as shown in the next.

Doped variational state and superconductivity
Let us generalize our variational state to the doped case, a topic
barely addressed in the AKLT context. In our DMRG studies in Fig.
3 and in previous efforts45, we found that in the two-hole ground
state, the largest-weight configuration occurs when holes are
placed at NN sites and in different orbitals. Having the two holes
in the same leg is not optimal because they collide: with one hole
per leg they can move without obstacles, while taking advantage
of the effective attraction in the variational state arrangement. For
this reason, and to reduce complexity, our proposed doped state
will have only one hole per orbital and will be obtained primarily
from the undoped state by removing one diagonal singlet. This is
exemplified for four-site PBCs in Fig. 7 (left) where classes are
shown. Note that the diagonal character of the 2 × 2 hopping
matrix establishes that the number of holes per orbital is
conserved.
Additional remarks: (1) here we use the unit hopping matrix, but

in most realistic situations a nonzero crystal field among the
orbitals (rendering them non-equivalent even after a change of
basis) as well as inter-orbital hoppings and non-equal diagonal
hoppings could be present. What occurs in these conditions
remains to be studied. (2) While at very large U/W the AKLT
guidance should work well, at intermediate U/W the form of the
orbital hopping matrix influences on the energy. Then, in the
ORVB Ansatz, the states with all inter-orbital singlets will not have
the same weight as the states with all intra-orbital singlets.
Two extra ingredients are needed. First, quantum mechanically

each hole in each orbital is “oscillating” (zero-point motion) via the
intra-orbital hopping because these are not frozen holes. Then,
the configuration with two holes in the same rung must be
included because it is generated by oscillations within the bound
state. Second, to avoid unpaired S= 1/2 electrons left and right of
that two-hole rung, a singlet across is required, as in the three
classes in Fig. 7 (right). Indeed, a π-shift across-the-hole develops
in the spin correlations of the two-orbital Hubbard ground state45.
This also occurs in one-orbital t–J models62,63. For completeness,
singlets across-the-hole were also added for diagonal hole
configurations as in the bottom left class of Fig. 7.
This procedure resembles qualitatively the exact solution of the

infinite U single-orbital Hubbard chain64: holes and spins are
independent in this limit. Our mobile holes can be visualized as
effectively inserted in between the original singlets of the
undoped valence-bond state.
The ORVB state from Fig. 7, but now for six sites and two holes,

23 classes are required [for two holes, to generate all states not
only translational symmetry and exchange of orbitals are needed
but also reflection (parity) with respect to the middle]. The overlap
with the two-hole Lanczos exact GS at U/W= 2 is 0.59. For eight
sites and two holes, 84 classes are needed, and the overlap at

Fig. 4 Phase diagram. Qualitative phase diagram varying the easy-
plane anisotropy D/t and hole doping x, at fixed U/W= 1.6 and JH/U
= 0.25, using DMRG. Hole density x= 0 represents half-filling, where
at D/t smaller than ≈0.2, the ground state is qualitatively connected
to the S= 1 Haldane phase. The label ORVB refers to the variational
state introduced later in the text. At larger D/t, a product state of on-
site triplets with zero spin projection Eq. (4) is a good representation
of the ground state. Upon doping at small D/t, first singlet pairing
dominates until at x ≈ 0.1 the spin/charge density wave (SDW/CDW)
correlations become stronger. Doping of the product state at D/t ≈
0.2 or larger leads to spin-triplet pairing over a broad range of
doping. We used DMRG and N= 48 OBC chains to construct the
phase diagram. Only a few points are shown with dots, but a denser
grid (x,D/t) was analyzed via DMRG.

Fig. 5 Two-site variational. Normalized-to-one two-site, two-orbital
undoped ground state of the Hubbard model at large U/W, Eq. (7),
when double occupancy is neglected. Shown is the total spin-zero
state of two sites, with two electrons per site, represented exactly in
terms of antisymmetric S= 1/2 singlets (blue arrows). a and b are the
two orbitals and (1,2) are the sites. Mathematically this is simply a
linear combination of AKLT states. Results are depicted as with
periodic boundary conditions (PBCs), providing a natural extension
beyond two sites, leading to our proposed variational state below.
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U/W= 1.5 is 0.48. These are good numbers, but more important is
how qualitatively these states capture the essence of the problem.
For instance, from the six-site exact GS the spin–spin correlations
can be measured using special projection operators45,65 for when
the mobile holes are at their highest-probability ground-state
position33,45. The Lanczos and our variational results are con-
trasted in Fig. 8a, b. The agreement is remarkable. While away
from the holes, the pattern resembles the undoped case, with
ferromagnetic (FM) rungs and AFM legs45, near the hole the AFM
correlation “across-the-hole,” typical of carriers in an AFM back-
ground, is reproduced. Moreover, a puzzling FM link diagonally
placed opposite to the diagonal of holes is also observed. Naively
this may suggest that triplets are needed in the undoped
variational state along diagonals. However, this effective FM
correlation is merely a consequence of the mobility of the holes
that displace the original on-site FM triplet—contained in our
variational state by construction because of the AKLT projection to
spin-1 at every site—from rung to diagonal.
Figure 8c also shows that at very large U/W our proposed

picture breaks down. In this regime, the effective AFM super-
exchange weakens because it scales as 1/U. As a consequence,
alternative tendencies such as “double exchange” as in the

manganite context55,66,67 are enhanced, leading to ferromagnet-
ism to improve the kinetic energy of the now unbounded holes.
This suggests that simply doping the S= 1 Haldane chain may not
be sufficient, but U/W must be limited to intermediate values to

Fig. 6 Four-site variational. Individual states used for the four-site, half-filled two-orbital Hubbard model with PBCs. The color-framed states
represent four distinct “classes.” A representative of each class is shown at the bottom with the same color convention. By applying translation
and orbital exchange for each representative (reflection is not needed for the undoped case), we recover all the states in the upper frames.
Note that the 16 AKLT states displayed are not orthogonal to one another. Our proposed variational state is an energy-optimized linear
combination of these 16 states (i.e., the weight of the four classes is different). Blue arrows are spin singlets, see Fig. 5.

Fig. 7 Doped variational. A representative of each of the seven
valence-bond classes used for a four-site chain with PBCs and two-
hole doping. Each class state represents a linear combination
involving translated, orbitals a and b exchanged, and parity-inverted
states. Blue arrows are spin singlets, see Fig. 5.

Fig. 8 Variational vs. exact. Schematic of the real-space spin–spin
correlations in the two-orbital chain for: a the two-hole exact ground
state and b the two-hole ORVB variational state. The lower (upper)
chain represents the orbital a (b). The holes, which are of course
mobile, are projected to their most likely position in the state via
projector operators45,65, and then spin–spin correlations are mea-
sured. Blue (orange) lines represent AFM (FM) bonds with line
thickness proportional to the magnitude of spin correlations. c Total
ground-state spin quantum number vs. U/W, for 0, 1, and 2 holes.
Calculations (a, b) are performed using Lanczos on a six-site PBC
chain, at U/W= 2.0, JH/U= 0.25, and D/t= 0. Here the probability of
single occupancy of one orbital is 96%, indicating that local moments
S ≈ 1 are well formed. However, the Heisenberg limit is only reached
at U/W > 5 (Fig. 2c, inset). This suggests that other terms in the strong
coupling expansion are of relevance in the regime of binding.
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avoid the ferromagnetic competition. However, in the reported
hole-binding range the total spin quantum numbers are
qualitatively compatible with those of our variational picture.
These optimal values of U/W are also compatible with our ladder
work33 and with alternative explanations focused on pairing
amplitudes and effective exchange interaction optimizations68,69.

Varying D/t
When easy-plane anisotropies are included, the spin-triplets
product state at each site TPS, Eq. (4), becomes increasingly a
better approximation as D/t grows (at D/t diverges, TPS is the
exact ground state). This evolution is illustrated in Fig. 9. In Fig. 9a,
the half-filling overlaps |〈ORVB|GS〉| and |〈TPS|GS〉| are shown. The
ORVB (TPS) overlap decreases (increases) with increasing D/t, as
expected. Note that the TPS state used here is crude: larger
overlaps in the D/t range shown could be obtained adding
fluctuations, but this is irrelevant for our main focus, that is, the
origin of the spin-singlet pairing at small D/t.
In addition, we observed that the spin–spin correlations

involving the z components within the two orbitals of the same
rung correctly evolve with increasing D/t. At small D/t, they are FM
because a spin close to S= 1 forms at each site. At large D/t, they
become AFM because only the spin-zero z-projection component
survives in the XY product state. Also note that the ORVB and TPS
states are not orthogonal to one another, but their overlap is very
small (0.02 for N= 8, 0.07 for N= 6, both at D= 0 PBCs).
The case of two holes (Fig. 9b) is more interesting. Here a level

crossing occurs (Fig. 9c): at small D/t the ORVB two-hole-doped
state has a nonzero overlap with the two-hole Lanczos state
because both states have quantum number (−1) under orbital
exchange (orbital antisymmetric). However, at D/t ≈ 0.125, where
the von Neumann entropy (Fig. 2c) signaled a qualitative
transition in the undoped case, a level crossing occurs in the
Lanczos ground state. At large D/t the quantum number under

orbital exchange becomes +1, leading to a nonzero overlap with
the orbital symmetric two-hole TPS state.

DISCUSSION
We introduced a variational state for the undoped and hole-
doped two-orbital Hubbard chain, verified its accuracy, and
explained the development of spin-singlet pairing upon doping.
Our analysis relies on valence-bond states defined in an extended
ladder-like geometry spanned by the real chain in the long axis
and the number of orbitals in the short axis. Our variational state is
an optimized linear combination of AKLT singlets. Using DMRG
and Lanczos, we found excellent agreement with our variational
predictions at intermediate U/W. The ES and von Neuman entropy
indicate that the undoped intermediate U/W regime is connected
to the Haldane limit at U/W » 1. However, in the realm of spin
models at U/W » 1, a strong competition with ferromagnetism
upon doping prevents pairing from occurring.
Our variational state relies on a mathematical expression

involving two S= 1 spins at NN sites, with one electron per
orbital. The global spin-zero state of these two sites is written
exactly exclusively using spin-1/2 singlets linking electrons at
those NN sites, involving the same or different orbitals. When
extended to more sites, the proposed variational state is an
optimized linear combination of spin-1/2 singlets in all possible
NN arrangements. Note that same-rung singlets are excluded
because of the large ferromagnetic Hund coupling. Using Lanczos,
our variational state was shown to be a good approximation to the
true ground state for small easy-plane anisotropy D/t, robust Hund
coupling JH/U, intermediate U/W, and light hole doping.
The preformed NN spin singlets—Cooper pairs—become

mobile upon hole doping, and will form a coherent super-
conducting state if employing the canonical BCS (Bardeen,
Cooper, and Schrieffer)-like product-state construction, at least
within the limitations of one dimensionality that only allow for
power-law decays. A weak coupling among chains will render the
state truly superconducting with long-range order, as in two-leg
Cu- or Fe-based ladders. Because of the small size of the Cooper
pairs, the coherent state is likely in the Bose–Einstein
condensation class.
What occurs if more orbitals are used? The pioneering work of

Haldane established that integer and half-integer spin chains are
intrinsically different. Thus, if we use three orbitals and still a
unit-matrix hopping, a generalized ORVB state with a spin gap
due to the presence of spin singlets should not be a good
variational state. However, using four orbitals we should return
to the class of two. The situation becomes more complicated,
and difficult to predict, if in addition to modifying the number of
orbitals we also add crystal fields, inter-orbital hoppings, or
assign different values in the diagonal for different orbitals. In
this case, the subject is totally open. First indications33 suggest
that binding is possible for ladders with a non-trivial hopping
matrix, but probably the undoped state is not topological as in
the Haldane chain. These many open issues will be addressed in
the future.
In summary, our study combines topological concepts with

correlation effects. Pairing emerges with hole doping via the
liberation of preformed spin-1/2 singlets already contained in the
undoped limit. For experimentalists to realize our model, the
challenge is to find quasi-1D materials with two nearly degenerate
dominant active orbitals, and with similar overlaps along the chain
so that the hopping matrix is nearly the unit matrix, as in our
calculations. How robust the Haldane regime is with regards to
small deviations from this hopping symmetric case, as well as the
introduction of an orbital small crystal-field splitting, remains to be
investigated (the orbital-selective Mott phase is close in parameter
space52–54). Doping the existing physical realizations of undoped
Haldane chains7,10 can provide a starting point towards the

Fig. 9 Overlaps. Overlaps |〈ORVB|GS〉| and |〈TPS|GS〉| vs. D/t for:
a zero hole (half-filling) and b two holes. The discontinuity in
b indicates a first-order transition due to a level crossing and
associated change in the ground-state quantum numbers under
orbital exchange; c ground-state chain energies, as well as their
derivatives to emphasize sudden slope changes, for two holes EN− 2.
All results (a–c) obtained with Lanczos using N= 6 and 8 sites
and PBCs.
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predicted superconductivity, but, again, intermediate U/W is a
more attractive parameter region than U/W » 1. For this reason, the
iron superconductor family provides a natural starting point,
although realizations could also be found in other multiorbital-
active compounds.

METHODS
Operators
To address pairing, we defined a general pair creation operator as

Δγγ0 y
ði;jÞ± ¼ 1ffiffiffi

2
p cyiγ"c

y
jγ0# ± cyiγ#c

y
jγ0"

� �
; (8)

where i,j are sites, γ,γ′ are orbitals (a or b), and ± sign represents a spin
singlet or triplet. We only focused on two different pair operators: (1) NN
pair that is odd under spin (singlet) and under orbital exchange (Synn (i)
below), (2) on-site inter-orbital pair that is even under spin (triplet) and
under orbital exchange (T yon (i) below). These are defined as

ΔS ¼ Synn ið Þ ¼ Δab y
i;iþ1ð Þ� � Δba y

i;iþ1ð Þ� ΔT ¼ T yon ið Þ ¼ Δab y
i;ið Þþ : (9)

In the main text, we often refer to Synn (i) as odd diagonal singlet and to T yon
(i) as on-site triplet, where “diagonal” and “rung” refers to the ladder
representation of a two-orbital chain Fig. 1. Using these pair creation
operators, we study the decay of the pair–pair correlations

PS Rð Þ ¼ 1
NR

X
i

hSynn ið ÞSynn i þ Rð Þi; PT Rð Þ ¼ 1
NR

X
i

hT yon ið ÞT yon i þ Rð Þi; (10)

where NR represents the number of total neighbors at distance R with
respect to site i, summed over all sites.
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