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Motivated by recent experimental progress in transition metal oxides with the K2NiF4 structure, we investigate
the magnetic and orbital ordering in α-Sr2CrO4. Using first-principles calculations, first we derive a three-orbital
Hubbard model, which reproduces the ab initio band structure near the Fermi level. The unique reverse splitting
of t2g orbitals in α-Sr2CrO4, with the 3d2 electronic configuration for the Cr4+ oxidation state, opens up
the possibility of orbital ordering in this material. Using real-space Hartree-Fock for multiorbital systems,
we constructed the ground-state phase diagram for the two-dimensional compound α-Sr2CrO4. We found stable
ferromagnetic, antiferromagnetic, antiferro-orbital, and staggered orbital stripe ordering in robust regions of the
phase diagram. Furthermore, using the density matrix renormalization group method for two-leg ladders with
the realistic hopping parameters of α-Sr2CrO4, we explore magnetic and orbital ordering for experimentally
relevant interaction parameters. Again, we find a clear signature of antiferromagnetic spin ordering along with
antiferro-orbital ordering at moderate to large Hubbard interaction strength. We also explore the orbital-resolved
density of states with Lanczos, predicting insulating behavior for the compound α-Sr2CrO4, in agreement with
experiments. Finally, an intuitive understanding of the results is provided based on a hierarchy between orbitals,
with dxy driving the spin order, while electronic repulsion and the effective one dimensionality of the movement
within the dxz and dyz orbitals driving the orbital order.
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I. INTRODUCTION

Transition-metal oxides with the perovskite structure
exhibit a wide variety of exotic magnetic, charge, and orbital
ordering [1–3]. The rich phase diagrams and intriguing phys-
ical properties of these materials is due to the Hubbard and
Hund interactions among the electrons occupying the 3d or-
bitals [4–7]. In particular, the study of perovskite compounds
with the K2NiF4 structure is of considerable interest due to
their similar crystal structures to the widely studied high-Tc

cuprates based on La2CuO4 [8,9] and also the exotic p-wave
superconductor Sr2RuO4 [10]. The orbital degree of freedom
plays a crucial role in various types of structural transitions
[11], in magnetic and charge order [12], and in exotic phenom-
ena, such as the colossal magnetoresistance in transition-metal
oxides with perovskite structure [13] and the previously men-
tioned high temperature superconductivity. The observation of
the peculiar antiferromagnetism in metallic transition metal
oxides [14] and ferromagnetism in insulating transition metal
oxides [15,16] are often caused by the phenomenon of orbital
ordering in the system [17].

Recent developments in the chromium-based Ruddlesden-
Popper (RP) series Srn+1CrnO3n+1, provide an ideal play-
ground for the spin and orbital degrees of freedom. Using x
rays and neutron diffraction, varying temperature, the simulta-
neous development of orbital and magnetic ordering has been
observed for Sr3Cr2O7, the n = 2 member of the RP series

[18]. In this compound, the spin ordering was found to be
antiferromagnetic, while the orbital ordering was described
as forming orbital singlet states [18,19]. The possibility of
high-Tc superconductivity in Sr3Cr2O7 has been also proposed
due to the hidden-ladder electronic structures [20] present in
this compound. The perovskite SrCrO3 with a cubic structure
(the n = ∞ member of the RP system) was synthesized five
decades ago and it is believed to be a nonmagnetic metal [21].
More recent studies on poly-crystalline SrCrO3 samples under
high pressure demonstrated an anomalous nonmetallic be-
havior [22]. Based on neutron and powder X-ray diffraction,
orbital ordering and electronic phase coexistence (tetragonal
and cubic phases) was observed in SrCrO3 [11]. At T = 40 K
due to the orbital ordering instability, the cubic structure trans-
forms to an antiferromagnetic tetragonal phase, which results
on a low-temperature phase coexistence in SrCrO3 [11]. In-
terestingly, orbital-ordering induced ferroelectricity has been
proposed in SrCrO3 [23].

Recently the study of α-Sr2CrO4 (the n = 1 member of
the RP series. with α denoting the allotrope with layered
structure) received attention due to its exotic magnetic and
orbital ordering [24–26]. This compound has the K2NiF4

type structure, rendering it isostructural to high-Tc supercon-
ducting cuprates such as La2CuO4. In Sr2CrO4, chromium
is in a Cr4+ oxidation state with a 3d2 electronic config-
uration and shows rare and unusual reversed crystal-field
splitting [27]. Although the compound α-Sr2CrO4 was first
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synthesized long time ago, high-quality bulk samples were
produced only quite recently [28]. In a recent experiment [28]
on pure samples of α-Sr2CrO4, using magnetic susceptibility
and specific heat measurements, two successive phase tran-
sitions at TN = 112 K and TS = 140 K were reported. As
discussed in Ref. [27], the lower temperature phase transition
(TN = 112 K) is attributed to Néel ordering, while the higher
temperature transition TS = 140 K is caused by orbital order-
ing [27].

In Refs. [27,29] using density functional theory, the orbital
ordering in α-Sr2CrO4 was explained by the reversal of the
crystal-field splitting. More specifically, it was shown that
the crystal-field energy location of the 3dxy orbital of the
chromium ion is lower in energy compared to the doubly
degenerate 3dxz and 3dyz orbitals, which leads to an active
orbital degree of freedom in the system. Moreover, in another
experiment [24], the pressure (P)-temperature (T ) phase dia-
gram was obtained for α-Sr2CrO4, showing that this material
remains an insulator even at large pressure and temperature.
Interestingly, under the high pressure condition they observed
only one phase transition from the antiferromagnetic insulat-
ing phase to a high temperature paramagnetic phase, while
the orbital-ordering phase transition (TS) disappears [24].
The disappearance of orbital-ordering was explained by the
restoration of the reversed crystal-field splitting under high-
pressure [30]. This shows the importance of the rare reverse
splitting in the orbitally ordered compound α-Sr2CrO4. Using
resonant x-ray scattering collinear Néel-type magnetic order-
ing coexisting with stripe-like ordering was demonstrated in
an experimental study of α-Sr2CrO4 [31]. Due to the difficul-
ties in the synthesis of α-Sr2CrO4 in pure form and due to the
effect of strong electronic interactions, only a few experimen-
tal and theoretical studies addressing this material have been
presented.

As discussed above, previous theoretical studies for
this material were based mainly on the density functional
theory. In this publication, for the first time, we have
studied the magnetic and orbital ordering of α-Sr2CrO4

using a multiorbital Hubbard Hamiltonian incorporating
the Hubbard and Hund interactions. Via first-principles
calculations we obtain the hopping amplitudes for the
two-dimensional compound α-Sr2CrO4. Employing
the unrestricted real-space Hartree-Fock approximation
for two-dimensional three-orbital Hubbard model, we
constructed the ground-state phase diagram by varying
the on-site Hubbard repulsion U and Hund coupling JH . We
have found interesting spin- and orbital-ordered states in the
phase diagram, including ferromagnetic, antiferromagnetic,
antiferro-orbital, and staggered orbital stripe ordering,
varying the U and JH parameters. More importantly, we
find a robust insulating phase with antiferromagnetic spin
ordering and antiferro-orbital ordering in a large region of
the phase diagram, which we consider to be quite relevant
for the experimental study of the compound α-Sr2CrO4.
Furthermore, employing the density matrix renormalization
group (DMRG) method [32] for a two leg-ladder with the re-
alistic hopping parameters of α-Sr2CrO4, we explore the spin
and orbital ordering at a fixed Hund coupling JH/U = 0.2
[33]. Interestingly, we found an excellent agreement between
Hartree-Fock and the DMRG method with regards to spin

and orbital ordering for experimentally relevant interaction
parameters. Using DMRG, we find the same insulating state
with antiferromagnetic spin ordering and antiferro-orbital
ordering as found via Hartree-Fock, for interaction strength
U/W � 2.0. We have also obtained the orbital-resolved
density of states using the Lanczos method [9], which
predicts an insulating ground state for α-Sr2CrO4. In a recent
experiment, the insulating nature of the ground state with an-
tiferromagnetic spin order was demonstrated for α-Sr2CrO4.

The organization of the manuscript is as follows. Section II
provides details of the ab initio calculations for α-Sr2CrO4.
Section III contains the multiorbital model and details of
the numerical methods used. Section IV presents the results
of the real-space Hartree-Fock method, where an extended
phase diagram of the model was constructed. Section V has
the DMRG and Lanczos results, where we focus on Hund
coupling JH/U = 0.2. In Sec. VI, a simple rationalization for
the results we have found is provided, explaining both the
magnetic and orbital order based on electronic correlations.
Finally, in Sec. VII, we present our conclusions.

II. DFT METHODS

Under ambient conditions, α-Sr2CrO4 forms a quasi-two-
dimensional K2NiF4-type structure with the space group
I4/mmm (No. 139), as shown in Fig. 1(a). The experimen-
tal lattice parameters are a = b = 3.816 Å and c = 12.482 Å
[24]. To understand the electronic properties of the α-Sr2CrO4

system, first-principles density functional theory (DFT) cal-
culations were performed based on the projector augmented
wave (PAW) method, as implemented in the Vienna ab initio
simulation package (VASP) code [34–36]. Here, we calculated
the electronic correlations by using the generalized gradi-
ent approximation (GGA) with the Perdew-Burke-Ernzerhof
function [37].

For the nonmagnetic state, our calculation uses the prim-
itive cell instead of the conventional cell to evaluate the
electronic structure of Sr2CrO4, with the volume of the primi-
tive cell being half of the conventional cell. Figure 1(b) shows
the primitive lattice vectors a1 = (−a/2, a/2, c/2), a2 =
(a/2, −a/2, c/2), and a3 = (a/2, a/2, −c/2), where a and
c are the conventional-cell lattice constants. The plane-wave
cutoff energy was 600 eV and the adopted k-point mesh was
10 × 10 × 10. Note that we tested explicitly that this k-point
mesh already leads to converged results. In addition to the
standard DFT calculation discussed thus far, the maximally
localized Wannier functions (MLWFs) method was employed
to study the three Cr 3d t2g bands by using the WANNIER90
packages [38].

Furthermore, we also followed the local spin density ap-
proach (LSDA) plus U , within the Dudarev formulation
[39] in the magnetic DFT calculations. Since no significant
structural transition was reported at low temperatures by ex-
periments [31,40], we have used the same crystal structure
for the magnetic states as employed for the nonmagnetic
calculations. To better understand and focus on the electronic
correlations, we did not relax the lattice constant and atomic
position for the magnetic configurations that we studied. The
magnetic lattice was chosen as a

√
2 × √

2 × 1 supercell,
involving two Cr atoms in one plane with the lattice constants
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FIG. 1. (a) Schematic crystal structure of the canonical cell
of Sr2CrO4 with the convention: green = Sr; blue = Cr; and
red = O. (b) Schematic crystal structure of the primitive cell of
Sr2CrO4. (b) Density of states near the Fermi level for the non-
magnetic state. Black = total; blue = Sr; red = Cr; and green =
O. (c) Projected band structure of Sr2CrO4 for the nonmagnetic
state. The Fermi level is shown with dashed lines. The weight
of each chromium orbital is represented by the size of the cir-
cle. The Brillouin zone notation is � = (0, 0, 0), X = (0, 0, π/2),
X = (0, 0, π/2), P = (π/4, π/4, π/4), N = (0, π/2, 0), and Z =
(π/2, π/2,−π/2).

5.397 Å and c = 12.482 Å, respectively. In our density of
states (DOS) magnetic calculations, we used 12 × 12 × 8 k
points and the plane cutoff energy was 550 eV.

Let us discuss now the electronic structure corresponding
to the nonmagnetic (NM) state of Sr2CrO4. According to the
calculated DOS [see Figs. 1(b) and 1(c)], the bands near the
Fermi level are primarily contributed by the Cr-3d t2g orbitals,
slightly hybridized with the O-2p orbitals. Figure 1(c) shows
that the eg orbitals dx2−y2 and d3z2−r2 occupy high-energy
states in the conduction band, indicating this system can be
accurately regarded as having two electrons per site on the
three t2g orbitals. For this reason, we constructed three Wan-
nier functions based on the MLWFs method [38], involving
the t2g orbital basis dxy, dyz, and dxz for each Cr atom. As
shown in Fig. 2(a), the DFT bands are accurately reproduced
by the Wannier bands obtained from MLWFs. Based on the
information of Wannier functions, we can deduce the on-site
energy of the three t2g orbitals and the corresponding hopping
parameters (see Sec. III for details).
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FIG. 2. (a) The original DFT band dispersion for Sr2CrO4 is
shown using red solid lines, while the Wannier interpolated band dis-
persion is presented using green dashed lines. (b) Schematic energy
splitting of Cr’s 3d orbitals with the d2 configuration. (c) Sketch of
nearest-neighbor hoppings along the x and y directions, as indicated.
(d) Tight binding (TB) band structure for the three t2g orbitals using
the 3 × 3 nearest-neighbor hopping matrices described in Sec. III.
Note that along �-P-X , the dyz and dxz are identical.

The energy splitting of the Cr 3d orbitals is sketched
in Fig. 2(b). First, the octahedral crystal field leads to
three lower-energy t2g orbitals (dxy, dyz, and dxz) and two
higher-energy eg orbitals (dx2−y2 and d3z2−r2 ). In general, the
Jahn-Teller distortion produces two different types of Cr-O
bonds, with two longer Cr-O bonds along the z direction and
four shorter Cr-O bonds within the a − b plane, resulting in
the energies of the dyz and dxz orbitals shifted down com-
pared with the energy of the dxy orbital. However, here the
crystal-field levels were reversed as discussed in Ref. [27],
leading to a lower dxy orbital as compared with the dxz and dyz

orbitals. Thus, this system can be regarded as (dxy)1(dxz, dyz )1,
as illustrated in Fig. 2(b). Based on the on-site energy differ-
ence between the dxy and dxz/dyz orbitals, the crystal splitting
energy is � = 0.11 eV. Because it is too difficult to deal
with hopping matrices over extended distances when em-
ploying three orbitals in DMRG, we only considered the
nearest neighbor (NN) hopping matrices along the x and y
axes [Fig. 2(c)]. Figure 2(d) shows that the tight binding (TB)
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band structure for three t2g orbitals using only the NN hopping
matrix qualitatively agrees with the DFT band structure.

III. THREE-ORBITAL HUBBARD MODEL AND METHODS

The multiorbital Hubbard model for the primarily two-
dimensional compound Sr2CrO4 with three Cr orbitals at each
site, derived using the ab initio calculation of the previous
section, will be presented here in detail. This multiorbital
Hubbard model can be written as the sum of kinetic and
interaction energy terms H = Hk + Hin [41]. The kinetic com-
ponent contains the hopping along the x and y directions of the
two-dimensional lattice:

Hk =
∑

i,σ,γ ,γ ′
t x
γ ,γ ′ (c†

iσ,γ ci+x̂,σ,γ ′ + H.c.)

+ t y
γ ,γ ′ (c†

i,σ,γ ci+ŷ,σ,γ ′ + H.c.) +
∑
i,γ σ

�γ ni,σ,γ , (1)

where t x
γ ,γ ′ is the NN hopping matrix along the x direction

in the orbital space γ = {dxz, dyz, dxy}, while t y
γ ,γ ′ is the NN

hopping matrix along the y direction. The vectors x̂ and ŷ are
unit vectors (in lattice spacing units) along the x and y axes,
respectively. ni,σ,γ represents the orbital- and spin-resolved
electronic number operator. These three orbitals will be de-
noted as γ = {1, 2, 3}, respectively, for notation simplicity.
The hopping matrices for α-Sr2CrO4 were obtained from a
tight-binding Wannier function analysis of DFT results and
they are all in eV units. The 3 × 3 hopping matrix along the
x-direction t x

γ ,γ ′ , between sites i and i + x̂, in orbital space and
in eV units, is given by

t x
γ ,γ ′ =

⎡
⎣

−0.193 0.000 0.000
0.000 −0.039 0.000
0.000 0.000 −0.246

⎤
⎦,

where γ is the orbital index for site i and γ ′ for i + x̂. Sim-
ilarly, t y

γ ,γ ′ is the 3 × 3 hopping matrix between sites i and
i + ŷ along the y direction:

t y
γ ,γ ′ =

⎡
⎣

−0.039 0.000 0.000
0.000 −0.193 0.000
0.000 0.000 −0.246

⎤
⎦.

The on-site matrix with the crystal fields �γ for each orbital
is given by

ton-site
γ ,γ =

⎡
⎣

4.748 0.000 0.000
0.000 4.748 0.000
0.000 0.000 4.639

⎤
⎦.

The matrices are diagonal because the three orbitals used
are orthogonal to each other, and no lattice distortions that
could break this symmetry are included. The kinetic energy
bandwidth is W = 2.0 eV.

The electronic interaction portion of the Hamiltonian is

Hin = U
∑

iγ

ni↑γ ni↓γ +
(
U ′ − JH

2

) ∑
i,γ<γ ′

niγ niγ ′

− 2JH

∑
i,γ<γ ′

Si,γ · Si,γ ′ + JH

∑
i,γ<γ ′

(P+
iγ Piγ ′ + H.c.). (2)

The first term is the on-site Hubbard repulsion between ↑
and ↓ electrons in the same orbital. The second term is
the on-site electronic repulsion between electrons at different
orbitals, same site. Due to the SU(2) symmetry of the Hamil-
tonian, the standard relation U ′ = U − 2JH is here assumed.
The third term shows the ferromagnetic Hund’s interaction
between electrons occupying the active three orbitals (γ =
{dxz, dyz, dxy}). The operator Si,γ is the total spin at site i and
orbital γ . The last term is the on-site pair-hopping between
different orbitals, where Piγ = ci↓γ ci↑γ .

To solve this three-orbital Hubbard model, and obtain
the predicted ground-state properties of α-Sr2CrO4, three
many-body techniques will be employed: the real-space
Hartree-Fock, DMRG, and Lanczos methods. For the real-
space Hartree-Fock calculation, we used a cluster size up
to 16 × 16, while for DMRG, we used cluster sizes up to
2 × 10 (sizes are severely restricted within DMRG three or-
bitals because, due to entanglement, this cluster demands even
more effort than a 6 × 10 one orbital). Using the Hartree-Fock
method, we have calculated the density of state (DOS), spin
and orbital correlations and their structure factors. The elec-
tronic density was fixed at n = 2/3 (two electrons per site, i.e.,
two electrons in three orbitals) in our numerical calculations.
For both the real-space Hartree-Fock and DMRG methods
we employed open-boundary conditions. For DMRG, at least
1600 states were kept during the calculations and we used
the DMRG + + software [42]. Furthermore, we employed the
Lanczos method for small clusters L = 2 × 2 to obtain the
orbital-resolved density of states.

IV. HARTREE-FOCK RESULTS

This section discusses the results for two-dimensional
clusters calculated using the unrestricted real-space Hartree-
Fock approximation. The Hartree-Fock decomposition is
performed for all the four-fermionic terms in the interaction
Eq. (2) leading to many order parameters 〈c†

i,α,σ ci,β,σ ′ 〉 for
each site i, where α, β are orbitals and σ, σ ′ are spins. We
started the iterative process from random initial conditions for
the order parameters and self-consistency was reached using
the modified Broyden’s method [43]. A chemical potential μ

is tuned to target the required electronic density. To smooth
the phase boundaries, we also performed Hartree-Fock cal-
culations starting with order parameters corresponding to the
ideal representation of the competing phases. To identify these
phases we have calculated spin-spin correlations, the associ-
ated spin structure factor, local spin moments, orbital-resolved
local densities, and the overall density of states.

The main result of this section is the JH/U versus U/W
phase diagram, presented in Fig. 3. Calculations were per-
formed for all the points indicated, employing either 16 × 16
or 12 × 12 cluster sizes. In the small U region, mainly for
U/W � 0.5, as expected we found either a featureless param-
agnetic metal (PM) or an incommensurate spin-density-wave
metallic (IC-SDW) phase, smoothly connected to one another.
Because this regime does not seem experimentally relevant,
we did not explore this region in further detail.

More important for our purposes, in the range JH/U <

0.24 coexisting antiferromagnetism and antiferro-orbital or-
dering (AFM + AFO) was identified. This state is insulating,
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FIG. 3. JH/U vs U/W phase diagram calculated using the
Hartree-Fock method for a two-dimensional system. Lattice sizes
12 × 12 and 16 × 16 were used. Electronic density is n = 2/3 i.e.
two electrons per site. The notation PM, IC-SDW, FM, AFM, AFO,
and SOS stands for paramagnetic, incommensurate spin-density
wave, ferromagnetic, antiferromagnetic, antiferro-orbital, and stag-
gered orbital stripe order, respectively. I and M stand for insulating
and metallic, respectively.

i.e., it has a robust gap at the chemical potential in the den-
sity of states. The value of U needed to stabilize this phase
strongly depends on the value of JH (see green region of the
phase diagram).

In the large Hund coupling region we found ferromagnetic
(FM) ordering, driven mainly by double exchange. In this
regime, several interesting phases were identified. In partic-
ular, we observed a metal to insulator transition increasing U
(blue and grey colored regions), and at large U the FM order
is accompanied with AFO in a small portion of the parameter
space explored. From the results in Fig. 3, we can safely claim
that AFO is stabilized by large U [27]. We have not found (via
mean field and in the parameter region studied) the collinear
orbital stripe (COS) state considered to be the ground state
in Ref. [31]. Further work is required to confirm or deny its
existence in the full phase diagram.

Figure 4(a) shows the evolution of energies with U/W for
various states, with JH/U fixed to 0.2. In the intermediate
U region we found a novel state dubbed staggered orbital
stripe (SOS) as the ground state, which is used as the energy
of reference in Fig. 4(a). This novel phase appears in the
intermediate U and JH region [red region in Fig. 4(c)], and
in this phase the average occupation in orbitals xy and xz is
0.75 each, while yz is 0.50, as shown in Fig. 4(e). On the other
hand, in the proposed COS phase and in the AFO phase of our
focus here, the orbital xy is half-filled (i.e., occupation 1.00)
while the orbitals xz and yz are quarter filled (occupation 0.50
each).

The colors in Figs. 4(c) and 4(d) indicate the mean value of
the local τ z

i for the SOS (depicting stripe order) and AFO (de-
picting staggered order) phases, respectively. For example, in
the SOS phase, there are vertical red stripes with local occupa-
tions nxz = nxy = 1, nyz = 0, and blue/white staggered stripes
with occupations (nyz = nxy = 1, nxz = 0) and (nxz = nyz =
1, nxy = 0), respectively. In our calculations, we found that
the above state is degenerate with the state having horizontal
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FIG. 4. (a) contains the energies of several states (indicated)
varying U/W , at fixed JH/U = 0.2. In (b), (c), and (d) the real-space
values of 〈τ z

i 〉 are displayed color coded for the COS, SOS, and AFO
states, respectively. See color explanation in text. In (e), the average
orbital-resolved electronic occupation 〈nα〉 and average local spin
moment 〈S2〉 is shown for various values of U/W .

blue stripes and staggered red and white stripes, as expected.
Increasing the interaction strength, for U/W � 1.8 the AFM
(spin staggered) + AFO (orbital staggered) ordering becomes
the ground state [at very large U/W the COS + AFM and
AFM + AFO states are close in energy, see Fig. 4(a)]. Note
the survival only of the red and blue colors, showing that nxy is
always 1, with nxz = 1.0/nyz = 0.0 (red) and nyz = 1.0/nxz =
0.0 (blue) alternating from site to site in a staggered manner.
The AFM + AFO is the most experimentally relevant state in
the phase diagram, and thus our most important result.

Some recent experiments employing pure samples of
α-Sr2CrO4 suggest that the compound is insulating with
antiferromagnetic spin ordering [24,44] (the type of orbital
ordering is still unclear experimentally). Based on these re-
sults, we assume the physical regime for this material lies
approximately within the U/W and JH/U pink or green range
of the phase diagram. Thus our mean field calculations sug-
gest that, from the perspective of magnetism only, the novel
SOS phase or the AFM + AFO phase are suitable candidates
at low temperatures for this material, because the other phases
are either FM or PM.

V. DMRG RESULTS

This section explores the spin and orbital ordering corre-
sponding to a two-leg ladder three-orbital Hubbard model [see
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FIG. 5. (a) Schematic representation of a two-leg ladder with
three-orbitals at each site. [(b) and (c)] DMRG phase diagram at
fixed JH/U = 0.2. (b) contains the spin ordering, where PM stands
for paramagnetic phase, IC for incommensurate ordering, and AFM
for antiferromagnetic staggered spin ordering. (c) contains the orbital
ordering, where RFO stands for rung ferromagnetic orbital ordering,
and AFO for antiferro-orbital ordering along both the leg and rung
of the ladder.

Fig. 5(a)] employing the density matrix renormalization group
method. The reason is that several previous examples, such as
in models for Cu- and Fe-based superconductors, has shown
that two-leg ladders and planes share qualitatively many prop-
erties [45–50], while DMRG in multiorbital systems can be
applied to ladders but not to planes. To obtain the physical
properties of the proposed model, we use the previously dis-
cussed ab initio hopping parameters of the two-dimensional
compound α-Sr2CrO4 and vary U/W at a fixed JH/U = 0.2,
because at this JH/U the Hartree Fock results suggest a rich
phase diagram.

Figures 5(b) and 5(c) contain the DMRG magnetic and
orbital ordering phase diagram for the ground state of the
system, based on DMRG calculations measuring the spin-spin
correlation, orbital-resolved site-average charge density, and
orbital-correlation functions. For low values of U/W � 1.0,
the system is in a paramagnetic phase (PM) without orbital
ordering, as expected in weak coupling. With slight increase
in interaction strength 1.0 � U/W � 1.5 a rung-ferro-orbital
(RFO) type orbital-ordering appears (without magnetic order-
ing). Further increasing the U coupling, at 1.5 � U/W � 2.0
incommensurate spin and orbital ordering is observed. While
these regions are all interesting from the fundamental physics
perspective, they will not be the focus of our publication
because they are not realized in Sr2CrO4. For this reason,
these states will not be discussed further.

For U/W � 2.0, an insulating state with antiferromagnetic
(AFM) order (see sketch in Fig. 6) and antiferro-orbital or-
dering (AFO) (see sketch in Fig. 8) becomes stable, results
consistent with those of the real-space Hartree-Fock method.
This AFM + AFO phase is our main focus because it is
the most experimentally relevant phase for the compound
α-Sr2CrO4.

A. Magnetic order

Figure 6(a) shows the spin-spin correlation S(r) =
〈S1 · S j〉 vs distance r for different values of U/W and at
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FIG. 6. (a) Real-space spin correlation S(r) = 〈S1 · S j〉 (with
r = |1 − j|), and (b) spin structure factor S(qx, π ), for different
values of U/W , at a fixed Hund coupling JH/U = 0.2, and using
a L = 2 × 8 cluster. (c) Schematic of a two-leg ladder, showing the
stabilized real-space spin arrangement at large U with the “snake”
counting of ladder sites index used in (a) to calculate the distance r.

JH/U = 0.2. We define Si = ∑
γ Siγ and in general r = |i −

j|, with i and j site indexes, although here we use site i = 1
as the reference site to calculate the spin-spin correlation from
other sites j. For U/W < 2.0, the spin-spin correlation decays
very fast with distance r, suggesting a PM phase in the system.
On the other hand, increasing the on-site repulsion to the
range U/W > 2.0, S(r) decays much more slowly, as a power
law, which is in agreement with having an AFM phase in
the system (in one dimension, full long-range order is not
possible). As shown schematically in Fig. 6, bottom panel,
the system forms antiferromagnetic ordering both along the
legs and along the rungs of the ladder. Interestingly, in recent
experiments with good quality samples of α − Sr2CrO4 the
presence of AFM ordering has been suggested via magnetic
susceptibility measurements [28]. Also in neutron diffrac-
tion studies, a clear AFM staggered order has been unveiled
in the (a, b) plane with a wave vector [1/2,1/2] at low
temperatures [29].

In order to visualize our results for magnetic ordering
in reciprocal space, we have calculated the spin structure
factor S(qx, qy) = (1/L)

∑
i, j e−iq·ri j 〈Si · S j〉 [in particular, we

calculated and used all the correlations S(r) available in
our ladder averaging over all possible distances r = |i − j|].
Figure 6(b) displays the spin structure factor S(qx, π ) for
different values of U/W at fixed JH/U = 0.2. A robust sharp
peak at S(π, π ) emerges for U/W > 2.0 [as schematically
shown in Fig. 6(c)]. Interestingly, the sharpness of the peak
at (qx = π, qy = π ) suggests that even using a two-leg lad-
der, the spin AFM ordering expected in the two-dimensional
compound Sr2CrO4 can be predicted using DMRG.

Figure 7(a) shows the site-average occupancy of or-
bitals 〈nγ 〉 versus U/W . Interestingly, for U/W � 2.0 the
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FIG. 7. (a) Site-average electron occupancy nγ for the three
orbitals {γ = 1, 2, 3} vs U/W . (Inset) Site-averaged charge fluctu-
ations δN vs U/W . (b) Site-average spin structure factor S(π, π )
vs U/W . (Inset) Site-averaged expectation value of the total spin
squared vs U/W . These results were obtained using DMRG with
cluster size L = 2 × 8 at fixed JH/U = 0.2.

population of γ = 3 (the dxy orbital) reaches 1, while the
other two orbitals γ = 1 (dxz) and γ = 2 (dyz) approach 1/2.
The occupancy of orbitals 〈nγ 〉 is consistent with results using
DFT and real-space Hartree-Fock [see Fig. 4(e)]. As discussed
in the DFT section, the reversed splitting of the crystal-field
levels of the t2g orbitals results into a lower energy dxy and
higher-energy degenerate (dxz, dyz) orbitals. This naturally
leads to occupancy 1 for the dxy orbital, while the remaining
single electron is shared by the degenerate dxz and dyz orbitals.

In order to find the metallic versus insulating character
of the system with increasing interaction strength U/W , in
the inset of Fig. 7(a), we show the charge fluctuations δN =
1/L

∑
i (〈n2

i 〉 − 〈ni〉2) versus U/W . For U/W < 2, δN has a
finite nonzero value, indicating metallic behavior. However,
for U/W � 2.0, δN approaches zero, suggesting insulating
behavior for the system. Figure 7(b) presents the peak value
of the spin structure factor S(π, π ) vs U/W . At U/W � 1.0,
S(π, π ) starts growing and saturates to a large value after
U/W � 2.0. The small values of S(π, π ) and finite δN , in-
dicates with clarity a metallic paramagnetic phase for U/W �
1.5. On the other hand, the large values of S(π, π ) for U/W �
2.0 signal a robust insulating state with AFM ordering in the
system. This evidence of insulating behavior with dominating
AFM S(π, π ) ordering is in excellent agreement with the re-
cent experiments based on neutron diffraction measurements
for α-Sr2CrO4 [29].

The inset of Fig. 7(b) shows the mean value of the lo-
cal spin-squared averaged over all sites 〈S2〉 = 1

L

∑
i〈Si · Si〉.

For U/W � 1.0 the local spin moment is fully developed at
each site and acquires the value S = 1 (i.e, magnetic moment
2.0 μB), primarily driven by a robust Hund coupling. The
results for the spin structure factor S(π, π ) and 〈S2〉 suggest
a robust spin S = 1 antiferromagnetic Néel ordering in the
system for U/W � 2.0.
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FIG. 8. (a) Electronic charge occupancy 〈nγ ,i〉 for the three or-
bitals {γ = 1, 2, 3} vs site index i at U/W = 6.0. [(b) and (c)] The
orbital-ordering structure factors (b) T (qx, π ) (c) T (qx, 0) at U/W =
6.0 and JH/U = 0.2. In (d), there is the schematic representation of
the electronic occupancies for the three orbitals dxy (green circles,)
dxz (red circles), and dyz (blue circles) at each site of a two-leg
ladder system. The colored circles with up or down arrows represent
occupied orbitals with the corresponding orientation of the spins,
while circles with no arrows denote empty orbitals. The size of
the circles does not denote electronic density; it just represents the
different orbitals.

B. Orbital order

As explained in the DFT section, the reverse splitting of
t2g orbitals into lower (dxy) and higher degenerate (dxz, dyz)
orbitals opens the possibility of orbital ordering in the sys-
tem. The site-average electronic occupancy of orbitals [〈n1〉 =
〈n2〉 = 0.5 and 〈n3〉 = 1] [see Fig. 7(a) for U/W � 2.0] also
hints towards a reverse splitting and suggest the presence of
an active orbital degree of freedom in the real compound
α-Sr2CrO4. Using the DFT method, antiferro-orbital ordering
has been shown in Ref. [27] for the compound α-Sr2CrO4

(see Appendix Fig. 12, where using DFT calculations we also
obtain antiferro-orbital ordering).

Here, to find the real-space orbital ordering pattern in
our ladder model for α-Sr2CrO4 we focus on the interaction
parameter U/W � 2.0 (because the model is in an insulating
state with AFM-spin ordering for U/W � 2.0). In Fig. 8(a),
we plot the population of the three orbitals nγ ,i vs the site
index i at U/W = 6.0 and JH/U = 0.2 for cluster size
L = 2 × 10. As shown in Fig. 8(a), the orbital 3 (dxy) takes
value one for all sites, whereas orbitals 1 (dxz) and 2 (dyz) show
a dominating staggered orbital ordering pattern, both along
the rung and legs of the ladder [except the first two and last
two rungs of the ladder which display ferro-type orbital order-
ing, but likely this is an edge effect due to the open boundary
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conditions of DMRG]. The bottom sketch of Fig. 8(d)
illustrates the real-space orbital and spin pattern on the two
leg ladder from a 2 × 10 cluster. Note that orbital dxy (green
circle) is always singly occupied, while orbitals dxz (red
circle) and dyz (blue circle) are occupied on alternate sites
along the rungs and legs of the ladder (namely AFO-orbital
ordering is shown).

To gather more insight, we investigate the system size
dependent orbital-ordering structure factor T (qx, qy) =
(1/L)

∑
i, j e−iq·ri j 〈TiTj〉 [where Ti = nγ=1,i − nγ=2,i] at

U/W = 6.0 for two wave vectors qy = 0 and π . In Figs. 8(b)
and 8(c), we show the orbital-ordering structure factors,
T (qx, π ) and T (qx, 0) versus qx, respectively, for three
cluster sizes L = 2 × 6, 2 × 8 and 2 × 10, at U/W = 6.0
and JH/U = 0.2. Interestingly, we find the value of the peak
at qx = π for T (qx, π ) increases sharply with increasing
the system size, see Fig. 8(b). However, the peak values for
T (qx, 0) decreases with increasing the system size. Thus,
the latter peak is probably due to finite size effects and it
can be discarded. The increase in strength of the (qx = π ,
qy = π ) peak clearly indicates that for large system sizes
the antiferro-type orbital ordering will be dominating for
U/W � 2.0.

C. Lanczos results and density of states

To characterize the metallic vs insulating behavior of the
system varying the interaction strength, in addition to the
charge fluctuations previously discussed we have also inves-
tigated the orbital-resolved density of state using the Lanczos
method for a small cluster L = 2 × 2. Although the cluster is
small, the results are enough to explain qualitatively the metal-
lic and insulating behavior of the system. Figure 9 contains
the orbital-resolved density of states (DOS) versus ω − μ (ω
is the frequency and μ is the chemical potential) for three
values of U/W = 0.5, 2.0, and 6.0, and at fixed JH/U = 0.2.
As shown in Fig. 9(a), all the three orbitals carry nonzero
weight at U/W = 0.5, indicating metallic behavior. However,
in Figs. 9(b) and 9(c) the system opens a large gap, compatible
with insulating behavior at U/W = 2 and 6. The insulating
behavior of thin films of the compound Sr2CrO4 has been
experimentally demonstrated by measuring the optical con-
ductivity spectra [44].

VI. ORIGIN OF STAGGERED AFM AND AFO ORDER

As discussed in previous sections, our numerical results
(HF, DMRG, and DFT) predict an insulating antiferromag-
netic state with antiferro-orbital ordering for the three-orbital
model representing the compound α-Sr2CrO4. We here pro-
vide an intuitive explanation for the existence of this spin and
orbital arrangement.

The stability of AFM order at U/W � 2.0 can be explained
intuitively by considering the dominant role of the most mo-
bile orbital dxy together with the on-site interaction U . The
dxy orbital is separated from the rest of the orbitals by the
crystal field, and it has the largest hopping amplitude along
both the x and y directions, see sketch in Fig. 10(a). Thus, as a
first crude approximation we can focus on this orbital. Its half-
filled nature, one electron per dxy orbital, makes this subspace
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FIG. 9. Orbital-resolved density of state (DOS) vs ω − μ for
different values of interaction strengths (a) U/W = 0.5, (b) 2.0,
and (c) 6.0, at fixed JH/U = 0.2, using the Lanczos diagonalization
method for a small L = 2 × 2 cluster.

effectively a one-orbital Hubbard model at half-filling n = 1.
Because of the large on-site interaction U , which generates an
effective Heisenberg superexchange model, staggered AFM
order dominates. Moreover, because of the robust on-site
Hund interaction JH , the electrons located in the other dxz

and dyz orbitals will follow the same spin pattern as the dxy

orbital. Thus, the overall driver of the AFM order in the entire
system is the dxy orbital. Note that if we would have focused
only on the two degenerate orbitals, then following the Kugel-
Khomskii ideas we would have not obtained simultaneous
AFM spin and orbital order.

The existence of antiferro-orbital ordering in the twofolded
degenerate space of orbitals dxz and dyz can be explained by
considering their hopping amplitudes (different along the x
and y directions) and the on-site interorbital repulsion U ′ =
U − 2JH . Note that the hopping amplitude for dxz orbitals
is much larger along the x direction than y, while for dyz

the reciprocal occurs, i.e., much larger along y than x. To
minimize the U ′ repulsion it is natural to spread the charge
in this dxz − dyz sector, leading to one electron per site in this
subspace. Once again, we remind the reader that the AFM
spin order is already fixed from the influence of the AFM
order in the dxy orbital and large Hund coupling. Now we are
only aiming to explain the other portion of the order, i.e., the
staggered orbital order.

Let us arrange electrons in the dxz − dyz subspace—
keeping the spin AFM fixed—starting at the center site in
the 3 × 3 lattice shown in Fig. 10(b). Arbitrarily, let us place
there an electron with spin down in orbital dyz, indicated by a
filled red circle. Because this orbital has hopping primarily
along the y axis, then to help with the electronic itineracy,
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FIG. 10. (a) Sketch representing the dxy orbitals, which have
the largest hopping amplitude along the x and y directions in the
t2g sector. This orbital is always occupied by one electron, thus it
develops staggered spin ordering. This AFM order in the dxy sector
fixes the AFM order in the rest of the orbitals due to the robust Hund
coupling. (b) Schematic representation of the dxz (blue) and dyz (red)
orbitals. The AFM spin order is fixed as explained in (a), and here we
aim to understand the orbital order. Circles in dark color represent
occupied orbitals while light color are empty orbitals. The hopping
amplitudes for dxz orbitals along the x direction (t x

1,1 = −0.193) dom-
inate over the y direction (t y

1,1 = −0.039). Reciprocally, the hopping
amplitudes for the dyz orbitals along y (t y

2,2 = −0.193) dominate over
the x direction hopping (t x

2,2 = −0.039). Those dominant hoppings
are represented by colored dashed lines.

which reduces the energy via the tight-binding term, the two
neighboring sites along y should not have electrons in dyz.
Then, in those sites the electron is located in the dxz orbital,
indicated with a filled blue circle. Because the spin must
follow the pattern dictated by the dxy orbital due to JH , then
those electrons have spin up.

Consider now the upper row in Fig. 10(b). After the central
spin is fixed in orientation and orbital dxz location by the
discussion above, by the same rationale as in the previous
paragraph, then the two sites left and right must contain
an electron in the dyz orbital with spin pointing down. By
this procedure all the sites of the lattice can be filled, and
the pattern that emerges is in Fig. 10(b). Clearly, the orbital
dxz is polarized up and has a staggered occupancy in the
two-dimensional lattice, and the orbital dyz is the opposite,
namely polarized down occupying the other half of the lattice.
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FIG. 11. Spin-resolved charge occupancy of the dxz and dyz or-
bitals vs site index i, using DMRG applied to a two-leg ladder of
size L = 2 × 8. (a) shows that 〈ni,1,↑〉 > 〈ni,1,↓〉 for the dxz orbitals.
(b) shows that 〈ni,2,↑〉 < 〈ni,2,↓〉 for the dyz orbitals, in agreement with
the qualitative description presented in Sec. VI.

Electrons in dxz move primarily along the x direction, while
those in dyz move along the y direction. Thus, both of them
are effectively one-dimensional with regards to their mobility,
while the dxy electrons are two-dimensional. With this ar-
rangement, the dominant U repulsion is not active since there
is no double occupancy, the U ′ repulsion is minimized by
spreading the charge, the JH term which is effectively attrac-
tive is active in all sites, and the kinetic energy is optimized
because all electrons in the dxz and dyz subspaces can jump to
empty nearest-neighbor sites.

The staggered arrangement of the dxz and dyz orbitals
emerging from this description was further confirmed by
DMRG calculations on the two-leg ladder. We find that
the electronic density for the dxz orbitals satisfies 〈ni,1,↑〉 >

〈ni,1,↓〉, while for the dyz orbital 〈ni,2,↑〉 < 〈ni,2,↓〉 (see
Fig. 11). This pattern of spins up in dxz and spin down in dyz

can be reversed, producing a degeneracy two in the state.

VII. CONCLUSIONS

In this publication, the magnetic and orbital ordering of
the compound α-Sr2CrO4 has been investigated by using
unrestricted real-space Hartree-Fock, DMRG, and Lanczos
techniques. Realistic hopping amplitudes for the three-orbital
Hubbard model used here were derived using ab initio
calculations. We applied the Hartree-Fock method to the two-
dimensional three-orbital Hubbard model, and we found a rich
phase diagram, with a variety of ferromagnetic (FM), anti-
ferromagnetic (AFM), staggered orbital (SOS), and antiferro-
orbital (AFO) ordered phases. Furthermore, using DMRG for
two-leg ladders we also investigated the spin and orbital order-
ing with the same realistic hopping parameters corresponding
to α-Sr2CrO4. Both the Hartree-Fock and DMRG methods
predict the same insulating ground state with antiferromag-
netic spin ordering, in excellent agreement with experiments.
Moreover, the unique reverse splitting of t2g orbitals for the
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compound Sr2CrO4 unveiled by DFT is important to under-
stand the orbital ordering. Both our Hartree-Fock and DMRG
results converge to a stable antiferro-orbital ordering for mod-
erate to large interaction strength U , a range expected to be
relevant for the real material Sr2CrO4. Using the Lanczos
method for a small size cluster, the orbital-resolved density
of state was calculated, and it displays insulating behavior for
this system. We believe that our numerical results related to
spin and orbital ordering, using a realistic three-orbital Hub-
bard model, provide a qualitatively accurate description for
the compound Sr2CrO4. With the evidence provided here and
in other related publications that the orbital degree of freedom
is active in Cr oxides, a plethora of attractive possibilities open
up, such as replicating with Cr the wide variety of orbitally
ordered states reported in manganites [51,52] and ruthenates
[53], the effect of strain [54,55], and the possibility of block
states [56–59] or even spirals [60]. Recent theoretical work
has even suggested that superconductivity is possible upon
doping a doubly degenerate multiorbital system in chains [61]
and, thus, similar results in planes could occur.
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APPENDIX

In this Appendix, we will discuss the magnetic ground state
and orbital ordering state of α-Sr2CrO4 based on DFT calcula-
tions. Considering the C4 symmetry of the 2D square lattice of
Sr2CrO4, we only calculated two possible spin configurations
[see Fig. 12(a)] by using LSDA + Ueff , with Ueff = 2 eV. We
found that the G-AFM (π , π ) has lower energy than the FM
state, which is consistent with the experimental results [29,31]
and also with our DMRG and real-space Hartree-Fock results
in a robust region of parameter space. As shown in Figs. 12(b)
and 12(c), the orbital ordering physics was also successfully
realized, namely the 3dxy orbitals are occupied in both the
spin-up and spin-down channels of the Cr atoms, while the
3dxz/3dyz are occupied in spin-up or spin-down Cr atoms,

-4
-2
0
2
4

-2 -1 0 1 2 3 4
-4
-2
0
2
4

G-AFMFM(a)

dxy
dxz
d3z2-r2
dyz
dx2-y2

Cr(↓)

Cr(↑)

(c)

D
O
S

(b)

D
O
S

Energy (eV)

FIG. 12. (a) Sketch of FM and G-AFM spin configurations in the
2D square lattice, considered in the DFT calculations. Spin-up and
spin-down are indicated by arrows. [(b) and (c)] Cr-projected local
DOS corresponding to the spin-up and spin-down Cr atoms in one
plane with a G-AFM type magnetic configuration, respectively. The
Fermi level is indicated with dashed lines.

respectively. In this case, the orbital-ordered state should have
wave vector (π , π ), namely, antiferro-orbital ordering (AFO)
along both x and y directions. Based on our DFT calcula-
tions, we qualitatively obtained the orbital ordering driven by
electronic correlation, in excellent agreement with the results
more systematically discussed in this publication using the
Hartee-Fock and DMRG calculations. Furthermore, we also
found a Mott gap in the DOS, as displayed in Figs. 12(b)
and 12(c), indicating that the system is a Mott-Hubbard-type
insulator in agreement with experiments [44].

In summary, using the DFT calculations, we properly re-
produced the recent developments in the experimental study
of the Sr2CrO4 system. We showed that the crystal field and
reversed Jahn-Teller distortion lead to the (dxy)1(dxz, dyz )1

electron occupation, corresponding to a CrO6 octahedral with
a 3d2 configuration. Furthermore, we obtained the G-AFM
(π , π ) ground state and (π , π ) antiferro-orbital ordering.
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