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Magnetic states of the quasi-one-dimensional iron chalcogenide Ba2FeS3
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Quasi-one-dimensional iron-based ladders and chains, with the 3d iron electronic density n = 6, are attracting
considerable attention. Recently, a new iron chain system Ba2FeS3, also with n = 6, was prepared under high-
pressure and high-temperature conditions. Here the magnetic and electronic phase diagrams are theoretically
studied for this quasi-one-dimensional compound. Based on first-principles calculations, a strongly anisotropic
one-dimensional electronic band behavior near the Fermi level was observed. In addition, a three-orbital
electronic Hubbard model for this chain was constructed. Introducing the Hubbard and Hund couplings and
studying the model via the density matrix renormalization group (DMRG) method, we studied the ground-state
phase diagram. A robust staggered ↑-↓-↑-↓ AFM region was unveiled in the chain direction, consistent with our
density functional theory (DFT) calculations. Furthermore, at intermediate Hubbard U coupling strengths, this
system was found to display an orbital selective Mott phase (OSMP) with one localized orbital and two itinerant
metallic orbitals. At very large U/W (W = bandwidth), the system displays Mott insulator characteristics, with
two orbitals half-filled and one doubly occupied. Our results for high pressure Ba2FeS3 provide guidance to
experimentalists and theorists working on this one-dimensional iron chalcogenide chain material.
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I. INTRODUCTION

One-dimensional material systems continue attracting con-
siderable attention due to their rich physical properties, where
the charge, spin, orbital, and lattice degrees of freedom are
intertwined in a reduced dimensional phase space [1–4]. Re-
markable physical phenomena have been reported in different
one-dimensional systems, such as high critical temperature
superconductivity in copper chains and ladders [5–7], ferro-
electricity [8–10], spin block states [11,12], nodes in spin
density [13], orbital ordering [14,15], orbital-selective Mott
phases [16,17], and charge density wave or Peierls distortions
[10,18–20].

Because superconductivity at high pressure was reported
a few years ago in the two-leg ladder compounds BaFe2X3

(X = S, Se) [21,22] with electronic density n = 6, the iron
ladders became interesting one-dimensional systems to re-
search high-temperature iron-based superconductors [23–31].
BaFe2S3 displays a stripe-type antiferromagnetic (AFM) or-
der below 12 K, involving AFM legs and ferromagnetic (FM)
rungs (this state is called CX) [21,32]. In addition, BaFe2Se3,
namely replacing S by Se, displays an exotic AFM state
with 2 × 2 FM blocks coupled antiferromagnetically along
the long ladder direction below 256 K under ambient condi-
tions [33,34]. By applying hydrostatic pressure, both systems
display an insulator-metal transition [22,24,25,28], followed
by superconductivity at P ∼ 11 GPa [21,22]. Furthermore, an
OSMP state was found in BaFe2Se3 by neutron experiments at
ambient pressure [35]. This state was theoretically predicted

before experimental confirmation by using the density matrix
renormalization group (DMRG) method based on a multior-
bital Hubbard model [36,37]. These developments in the area
of two-leg iron ladder systems naturally introduce a simple
question: can iron chains, as opposed to ladders, also display
similar physical properties?

Some iron chalcogenide chains AFeX2 (A = K, Rb, Cs
and Tl, X = S or Se) have already been prepared experimen-
tally [38,39]. Neutron diffraction experiments revealed that
the magnetic coupling along the chain direction is AFM with
dominant π wave vector (↑-↓-↑-↓) [39,40], similar to the CX-
AFM state in BaFe2S3. But in AFeX2 compounds there are
five electrons in the 3d iron orbitals, corresponding to valence
Fe3+. At this electronic density n = 5, the AFM phase with
the ↑-↓-↑-↓ configuration was observed in a large portion
of the magnetic phase diagram when using the five-orbital
Hubbard model for iron chains studied via the real-space
Hartree-Fock (HF) approximation [41]. However, these HF
calculations reported a much richer phase diagram for iron
chains at electronic density n = 6. Considering that the atomic
electronic density n = 6 is the same as in iron planar and
ladder superconductors [42], then iron chains with electronic
density n = 6 could be potential candidates to achieve a simi-
lar superconducting state.

Na2FeSe2 with n = 6 was considered as a candidate [43].
Recent DMRG calculations [44] found a stable region of
staggered spin order in the phase diagram (with ↑-↓-↑-↓
order) at low Hund coupling JH/U , while block phases (↑-
↑-↓-↓) dominate at larger JH/U . Another interesting iron
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FIG. 1. Schematic crystal structure of the high-pressure Ba2FeS3

conventional cell (green = Ba; brown = Fe; yellow = S). (a) Sketch
of the ac plane along b direction. (b) FeS4 chain along the b axis.
(c) Interchains magnetic exchange couplings on the ac plane.

chain with n = 6 Ln2O2FeSe2 (Ln = Ce, La) was prepared
experimentally [45,46]. In addition, OSMP and Hund physics
were discussed in this compound by using DMRG-based cal-
culations based on the Hubbard model [47].

Very recently, a new n = 6 iron chalcogenide Ba2FeS3

(note this is a 213 formula, unlike the 123 of ladders) was
synthesized under high-pressure (HP) and high-temperature
conditions [48]. A long-range AFM transition was reported
at ∼56 K, and the magnetic susceptibility curve exhibited a
round hump behavior until 110 K [48]. As shown in Fig. 1(a),
Ba2FeS3 (HP) has an orthorhombic structure with space group
Pnma (No. 62). In the crystal structure of Ba2FeS3 (HP) there
are four FeS4 chains along the b axis, where nearest-neighbor
irons are connected by sulfur atoms along the chain direction
[see Fig. 1(b)]. The nearest-neighbor (NN) Fe-Fe bond is
4.30 Å, corresponding to the lattice constant along the b axis
[48]. In addition, the NN and next-nearest-neighbor (NNN)
interchain distances are 5.52 and 5.86 Å, respectively, as dis-
played in Fig. 1(c). Based on the crystal structure, the Ba2FeS3

(HP) phase displays quasi-one-dimensional characteristics,
suggesting that the chain direction plays the dominant role in
the physical properties.

To better understand the electronic and magnetic struc-
tures, here both first-principles DFT and DMRG methods

were employed to investigate Ba2FeS3 (HP). First, the ab
initio DFT calculations indicated a strongly anisotropic elec-
tronic structure for Ba2FeS3 (HP), in agreement with its
anticipated one-dimensional geometry. Furthermore, based on
DFT calculations, we found the staggered spin order was the
most likely magnetic ground state, with the coupling along
the chain direction dominated by the π wave vector. Based
on the Wannier functions obtained from first-principle cal-
culations, we obtained the relevant hopping amplitudes and
on-site energies for the iron atoms. Next, we constructed a
multiorbital Hubbard model for the iron chains. Based on
the DMRG calculations, we calculated the ground-state phase
diagram varying the on-site Hubbard repulsion U and the
on-site Hund coupling JH . The staggered AFM with ↑-↓-↑-↓
was found to be dominant in a robust portion of the phase dia-
gram, in agreement with DFT calculations. In addition, OSMP
physical properties were found in the regime of intermediate
Hubbard coupling strengths. Eventually, at very large U/W ,
the OSMP is replaced by the Mott insulating (MI) phase.

II. METHOD

A. DFT method

In the present study the first-principles DFT calculations
were performed with the projector augmented wave (PAW)
method, as implemented in the Vienna ab initio simulation
package (VASP) code [49–51]. Here the electronic correlations
were considered by using the generalized gradient approxima-
tion (GGA) with the Perdew-Burke-Ernzerhof functional [52].
The plane-wave cutoff was 500 eV. The k-point mesh was
8 × 16 × 4 for the nonmagnetic calculations, which was ac-
cordingly adapted for the magnetic calculations. Note that we
tested explicitly that this k-point mesh already leads to con-
verged energies. Furthermore, the local spin density approach
(LSDA) plus Ueff with the Dudarev format was employed [53]
in the magnetic DFT calculations. Both the lattice constants
and atomic positions were fully relaxed with different spin
configurations until the Hellman-Feynman force on each atom
was smaller than 0.01 eV/Å. In addition to the standard DFT
calculations, the maximally localized Wannier functions (ML-
WFs) method was employed to fit the Fe 3d’s bands by using
the WANNIER90 packages [54]. All the crystal structures were
visualized with the VESTA code [55].

B. Multiorbital Hubbard model

To better understand the magnetic behavior of the quasi-
one-dimensional Ba2FeS3 in the dominant chain direction, an
effective multiorbital Hubbard model was constructed. The
model studied here includes the kinetic energy and interaction
energy terms H = Hk + Hint. The tight-binding kinetic por-
tion is described as

Hk =
∑

iσγ γ ′
tγ γ ′ (c†

iσγ ci+1σγ ′ + H.c.) +
∑
iγ σ

�γ niγ σ , (1)

where the first part represents the hopping of an electron from
orbital γ at site i to orbital γ ′ at the NN site i + 1, using
a chain of length L. γ and γ ′ represent the three different
orbitals.
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The (standard) electronic interaction portion of the Hamil-
tonian is

Hint = U
∑

iγ

ni↑γ ni↓γ +
(
U ′ − JH

2

) ∑
i

γ < γ ′

niγ niγ ′

− 2JH

∑
i

γ < γ ′

Siγ · Siγ ′ + JH

∑
i

γ < γ ′

(P†
iγ Piγ ′ + H.c.).

(2)

The first term is the intraorbital Hubbard repulsion. The sec-
ond term is the electronic repulsion between electrons at
different orbitals where the standard relation U ′ = U − 2JH

is assumed due to rotational invariance. The third term rep-
resents the Hund’s coupling between electrons occupying the
iron 3d orbitals. The fourth term is the pair hopping between
different orbitals at the same site i, where Piγ = ci↓γ ci↑γ .

To solve the multiorbital Hubbard model, and obtain the
magnetic properties of Ba2FeS3 (HP) along the b-axis direc-
tion including quantum fluctuations, the many-body technique
was employed based on the DMRG method [56,57], where
specifically we used the DMRG++ software [58]. In our
DMRG calculations we employed a 16-sites cluster chain with
open-boundary conditions (OBCs). Furthermore, at least 1400
states were kept and up to 21 sweeps were performed during
our DMRG calculations. In addition, the electronic filling
n = 4 in the three orbital was considered. This electronic
density (three electrons in four orbitals) is widely used in the
context of iron superconductors with Fe2+ valence (n = 6)
[36,59]. The common rationalization to justify this density is
to consider one orbital doubly occupied and one empty, and
thus both can be discarded. This leads to four electrons in
the remaining three orbitals, providing a good description of
the physical properties for the real iron systems with n = 6
[36,60,61].

In the tight-binding term we used the Wannier function
basis {dxz, dx2−y2 , dxy}, here referred to as γ = {0, 1, 2}, re-
spectively. We only considered the NN hopping matrix:

tγ γ ′ =
⎡
⎣

0.012 0.045 0.080
0.045 0.112 −0.018

−0.080 0.018 0.238

⎤
⎦. (3)

All the hopping matrix elements are given in eV units. �γ

is the crystal-field splitting of orbital γ . Specifically, �0 =
−0.339, �1 = 0.047, and �2 = −0.127 (the Fermi level is
considered to be zero). The total kinetic energy bandwidth
W is 1 eV. More details about the Wannier functions and
hoppings can be found in Appendix A.

III. DFT RESULTS

A. Nonmagnetic state

Before addressing the magnetic properties, let us discuss
the electronic structures of the nonmagnetic state of Ba2FeS3

(HP) based on the experimentally available structural proper-
ties [48]. At high pressure, the lattice constants are a = 8.683
Å, b = 4.297 Å, and c = 17.025 Å, respectively.
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FIG. 2. (a) Density-of-states near the Fermi level of Ba2FeS3

(HP) for the nonmagnetic phase (black = total; blue = Ba; red = Fe;
cyan = S). (b) Band structures of Ba2FeS3 (HP) for the nonmagnetic
state. The Fermi level is shown with a dashed horizontal line. The
coordinates of the high-symmetry points in the Brillouin zone (BZ)
are � = (0, 0, 0), X = (0.5, 0, 0), S = (0.5, 0.5, 0), Y = (0, 0.5, 0),
Z = (0, 0, 0.5), U = (0.5, 0, 0.5), R = (0.5, 0.5, 0.5). Note that all
the high-symmetry points are in scaled units, corresponding to the
units of 2π/s (s = a, b, or c).

First, we present the density-of-states (DOS) of the non-
magnetic state of Ba2FeS3 (HP), displayed in Fig. 2(a). Near
the Fermi level, the electronic density is mainly contributed by
the iron 3d orbitals, where the p-d hybridization between Fe
3d and S 3p states is weak. Furthermore, the Fe 3d bands of
Ba2FeS3 (HP) are located in a relatively small range of energy
from −1 to 1 eV, while the S 3p bands are located at a deeper
energy level from −5 to −2 eV. In iron ladders [27], the p-d
hybridization was reported to be stronger than in the Ba2FeS3

(HP) chain under investigation here. According to the DOS of
Ba2FeS3 (HP), the charge transfer gap � = εd − εp is large,
indicating Ba2FeS3 (HP) is a Mott-Hubbard system. Thus, the
Fe-S hybridization is smaller than that in iron ladders.

The result of the previous paragraph can be understood
intuitively. First, in the dominant Fe chain of Ba2FeS3 (HP),
the Fe-Fe bond along the chain is about 4.30 Å, larger than
the corresponding number for the iron ladder (∼2.64 Å) with
n = 6 [32]. Second, there is only one S atom connecting NN
Fe atoms (with Fe-S bond ∼2.44 Å) in the iron chains of
Ba2FeS3 (HP). On the other hand, in iron ladders with n = 6
[32], there are two S atoms connecting the NN Fe atoms
along the leg direction (with Fe-S bonds being 2.29 and 2.27
Å). Considering those differences of structural geometries as
compared to iron ladders, the overlap of Fe and S atoms of
Ba2FeS3 (HP) would be weaker than that of iron ladders,
resulting in a weaker p-d hybridization in the Ba2FeS3 (HP)
chain.

The projected band structures of Ba2FeS3 (HP) are dis-
played in Fig. 2(b). It is clearly shown that the band is more
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dispersive from Y to � along the chains than along other di-
rections, such as � to X along the a axis, which is compatible
with the presence of quasi-one-dimensional chains along the
ky axis. In this case, the intrachain coupling should play the
key role in magnetism and other physical properties.

B. Magnetism

To qualitatively represent the magnetism of Ba2FeS3 (HP),
a simple classical Heisenberg model with three magnetic
exchange couplings J was introduced to described phe-
nomenologically this system:

H = −J1

∑
〈i j〉

Si · S j − J2

∑
[kl]

Sk · Sl

−J3

∑
{mn}

Sm · Sn, (4)

where J1 is the intrachain exchange interactions between NN
Fe-Fe spin pairs, while J2 and J3 are the interchain exchange
interactions between two NN iron chains, corresponding to
two different interchain Fe-Fe distances, as displayed in
Fig. 1(c). By mapping the DFT energies of different magnetic
configurations [62], based on the experimental lattice struc-
ture, we obtained the coefficients of different J’s as a function
of Hubbard Ueff in Fig. 3. As expected, J1 is the dominant one,
indicating that the intrachain magnetic coupling plays the key
role in this system. Based on these calculated J’s, the magnetic
coupling along the chain favors AFM, while the interchain
couplings are quite weak.

To better understand the possible magnetic configurations,
we also considered several AFM configurations in a 1 × 2 × 1
supercell, as shown in Fig. 4(a). Both the lattice constants and
atomic positions were fully relaxed for those different spin
configurations. First, the AF2 magnetic order always has the
lowest energy among all tested candidates, independently of
Ueff , as shown in Fig. 4(b). Furthermore, the energies of the
AF1 and AF3 orders are close to the energy of the AF1 state,
indicating a quite weak J3 coupling, in agreement with our
previous discussion using the Heisenberg model.
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FIG. 4. (a) Sketch of some possible AFM patterns studied here.
Spin up and down are distinguished by brown and blue, respectively.
(b)–(d) DFT results for Ba2FeS3 (HP) as a function of Ueff . (b) En-
ergies (per Fe) of various magnetic orders are indicated. The FM
configuration is taken as the reference. (c) Local magnetic moments
of Fe, integrated within the default Wigner-Seitz sphere as specified
by VASP. (d) Band gaps for the many states analyzed.

Moreover, the calculated local magnetic moment per Fe is
displayed in Fig. 4(c), for different possible magnetic con-
figurations. With increasing Ueff , the moment of Fe in the
AF2 state increases from 3.12 to 3.55 μB/Fe, which is higher
than those calculated for the CX-AFM type configuration
in iron ladders with n = 6 [24]. As shown in Fig. 4(d), all
AFM orders are insulating and the gap increases with Ueff , as
expected.

According to the calculated DOS for the AF2 state, the
bands near the Fermi level are mostly contributed by Fe’s 3d
orbitals and the Fe atom is in the high spin configuration. Fur-
thermore, the DOS plot indicates a Mott transition behavior
(Fig. 5). Our calculated band gap for the case Ueff = 1 eV
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in the AF2 state is about 0.62 eV, which is very close to the
experimental gap obtained from fitting the resistivity versus
1/T curve (∼0.676 eV) [48].

In summary of our DFT results, we found a strongly
anisotropic quasi-one-dimensional electronic band structure,
corresponding to its dominant chain geometry. In addition,we
found the AF2 magnetic order is the most likely ground state,
where the interchain coupling dominates. Furthermore, our
calculations also indicated this system is a Mott-Hubbard
system with a Mott gap.

IV. DMRG RESULTS

As discussed in the DFT section, the chain direction is
the most important for the physical properties of Ba2FeS3

(HP). Using DFT+U calculations, we obtained a strong
Mott insulating AFM phase. However, in one-dimensional
systems, quantum fluctuations are important at low temper-
atures. Because DFT neglects fluctuations, here we employed
the many-body DMRG method to incorporate the quantum
magnetic couplings in the dominant chain, where quantum
fluctuations are needed to fully clarify the true magnetic
ground-state properties. In fact, in previous well-studied iron
one-dimensional ladders and chains, those quantum fluctua-
tions were found to be crucial to understand the magnetic
properties [17,35]. It also should be noticed that the DMRG
method has proven to be a powerful technique for discussing
low-dimensional interacting systems [63,64].

As discussed before, here we consider the effective multi-
orbital Hubbard model with four electrons in three orbitals per
site (more details can be found in Sec. II B), corresponding
to the electronic density per orbital n = 4/3. Note that this
electronic density is widely used in the context of iron low
dimensional compounds with DMRG technology, where the
“real” iron is in a valence Fe2+, corresponding to six electrons
in five orbitals per site [36,59]. To understand the physical
properties of this system, we measured several observables
based on the DMRG calculations.

The spin-spin correlation in real space are defined as

S(r) = 〈Si · S j〉, (5)

with r = |i − j|, and the spin structure factor is

S(q) = 1

L

∑
r

e−iqrS(r). (6)

The site-average occupancy of orbitals is

nγ = 1

L
〈niγ σ 〉. (7)

The orbital-resolved charge fluctuation is defined as

δnγ = 1

L

∑
i

(〈
n2

γ ,i

〉 − 〈nγ ,i〉2
)
. (8)

The local spin-squared, averaged over all sites, is

〈S2〉 = 1

L

∑
i

〈Si · Si〉. (9)

As already explained, the hopping amplitudes were ob-
tained from the ab initio DFT calculations for Ba2FeS3 (HP)
(see Appendix A for details). Furthermore, based on the spin-
spin correlation and spin structure factor, we calculated the
phase diagram of the Ba2FeS3 iron chain with increasing
U/W at different Hund couplings JH/U , using primarily a
system size L = 16. In the following we will discuss our main
DMRG results at JH/U = 0.25 because this robust JH/U
value is believed to be physically realistic for iron-based su-
perconductors [59].

A. Staggered AFM phase

Based on the DMRG measurements of the spin-spin
correlation and spin structure factor, we found the param-
agnetic phase (PM) at small U/W , followed by a robust
canonical staggered AFM phase with ↑-↓-↑-↓ configuration.
Figure 6(a) shows the spin-spin correlation S(r) = 〈Si · S j〉
vs distance r, for different values of U/W . The distance is
defined as r = |i − j|, with i and j site indexes. At small
Hubbard interaction U/W < 0.6, the spin correlation S(r) de-
cays rapidly vs distance r, indicating paramagnetic behavior,
as shown in Fig. 6(a) (see result at U/W = 0.3). By increasing
U/W , the system transitions to the canonical staggered AFM
phase with the ↑-↓-↑-↓ configuration in the whole region
of our study (U/W � 12). As shown in Fig. 6(b), the spin
structure factor S(q) displays a sharp peak at q = π , corre-
sponding to the canonical staggered AFM phase, consistent
with our DFT calculations. In addition, we also calculated
the spin-spin correlation S(r) and spin structure factor S(q)
using a larger cluster L = 24, as shown in Figs. 6(c) and 6(d).
Those results are similar to the results of L = 16, indicating
that our conclusions of having a canonical staggered AFM
phase with π vector dominating in the phase diagram is robust
against changes in L. Note that in one dimension, quantum
fluctuations prevent full long-range order. Thus, the tail of the
spin-spin correlations have a smaller value for L = 24 than
for L = 16. But the staggered order tendency is clear in both
cases.

In the range of U/W we studied, we did not observe
any other magnetic ordering tendencies, suggesting the AFM
coupling(↑-↓-↑-↓) is quite stable. This is physically reason-
able, considering known facts about the Hubbard model. In
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|i − j| in real space) and (b) the spin structure factor S(q), both at
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real space) and (d) the spin structure factor S(q), at different values
of U/W and fixed JH/U = 0.25, for L = 24. (e) Magnetic phase
diagram for JH/U = 0.25.

the Ba2FeS3 (HP) system, the iron 3d orbitals are mainly
located in a small energy region and with small bandwidth
(∼1 eV), as shown in Fig. 2. By introducing the on-site Hub-
bard U interaction on Fe sites, the 3d orbitals would be easily
localized in the Fe sites because the bandwidth is narrow.
In this case, the standard superexchange Hubbard spin-spin
interaction dominates, leading the spins to order antiferromag-
netically along the chain. Note that one orbital (γ = 2) clearly
has the largest hopping amplitude from the DFT results, thus
this orbital leads in the formation of the AFM order. Due to
the large Fe-Fe distance (∼4.3 Å) and the special FeS4 chain
geometry, in the Ba2FeS3 (HP) system the electrons of the iron
3d states are localized with weak p-d hybridization, dominat-
ing the superexchange mechanism. Hence, our DMRG results
indicating the dominance of the ↑-↓-↑-↓ configuration are in
agreement with our DFT calculations.

B. Charge fluctuations

The site-average occupancy of different orbitals nγ vs
U/W is shown in Fig. 7, for a typical value of JH/U . At
small U/W (<0.6), a metallic weakly interacting state is
found, with noninteger nγ values. In the other extreme of
much larger U/W , the population of orbital γ = 0 reaches
2, and this orbital decouples from the system. Furthermore,
the other two orbitals γ = 1 and γ = 2 reach population 1,
leading to two half-occupied states. In this extreme U/W case
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FIG. 7. Orbital-resolved occupation number nγ , averaged value
of the total spin-squared 〈S2〉 vs U/W , at JH/U = 1/4. Here we used
a 16-sites cluster chain with NN hoppings for four electrons in three
orbitals.

(n0 = 2, n1 = 1, and n2 = 1), the system is in a Mott insulator
staggered AFM state.

In addition, the average value of the local spin-squared
averaged over all sites 〈S2〉 is also displayed in Fig. 7, varying
U/W . The strong local magnetic moments are fully developed
with spin magnitude S ∼ 1, corresponding to four electrons in
three orbitals at very large U/W .

To better understand the characteristics of metallic vs insu-
lating behavior in this system, we have also studied the charge
fluctuations δnγ for different orbitals, as shown in Fig. 8. In
the small-U paramagnetic phase (U/W < 0.6), the system is
metallic due to weak interactions. Increasing U/W , the charge
fluctuations of different orbitals are considerable at interme-
diate Hubbard coupling strengths, indicating strong quantum
fluctuations along the chains. As U/W increases further, the
charge fluctuations of γ = 1 rapidly reaches zero, leading
to localized orbital characteristics, while the γ = 2 orbital
still has larger fluctuations with some itinerant electrons. In
this case, this intermediate regime corresponds to the OSMP
state. At even larger U/W (�4.5), the charge fluctuations of
the different orbitals are suppressed to nearly zero. Thus, the
system becomes fully insulating at very large U/W , with two
half-filled orbitals (γ = 1 and γ = 2) and one fully occupied
orbital (γ = 0) (see Fig. 7), as already explained. Here the
charge fluctuations are totally suppressed by the electronic
correlations.
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FIG. 8. Charge fluctuations δnγ = 1
L

∑
i(〈n2

γ ,i〉 − 〈nγ ,i〉2) vs
U/W at JH/U = 1/4. Here we used a 16-sites cluster chain with NN
hoppings for four electrons in three orbitals.
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C. Orbital-selective Mott phase

Let us now focus on the intermediate regime of OSMP.
As displayed in Fig. 7, at intermediate Hubbard coupling
strengths, the system displays OSMP behavior. In this regime
the γ = 1 orbital population reaches 1, indicating localized
electronic characteristics, while the other two orbitals have
noninteger electronic density, leading to metallic electronic
features. Furthermore, we also compare these results with a
larger system site L = 24 (see Appendix B), indicating the
conclusion is robust against changes in L. Although the site-
average occupancy is 1 (see Fig. 7), the γ = 1 orbital has
some charge fluctuations in the region 0.6 � U/W < 2.0, as
shown in Fig. 8. Above U/W = 2.0, the charge fluctuations
of the γ = 1 orbital remain zero, indicating full localized
behavior, while the other two orbitals still have finite values
for the charge fluctuations until a larger U/W ∼ 5.

To better understand the OSMP region, we calculated the
single-particle spectra Aγ (q, ω) and the orbital-resolved pro-
jected density of states (PDOS) ργ (ω) vs frequency ω by
using the dynamical DMRG, where the dynamical correla-
tion vectors were obtained using the Krylov-space approach
[65,66]. Here the broadening parameter η = 0.1 was chosen
in our DMRG calculations. The chemical potential is obtained
from μ = (EN+1 − EN−1)/2, where EN is the ground-state
energy of the N-particle system. The single-particle spectra
Aγ (q, ω) = Aγ (q, ω < μ) + Aγ (q, ω > μ) is calculated from
the portions of the spectra below and above μ, respectively:

Aγ (q, ω < μ) = −1

Lπ

∑
j

ei jqIm〈�GS|

× c j,γ
1

ω − H + EG + iη
cL/2,γ |�GS〉, (10)

Aγ (q, ω > μ) = −1

Lπ

∑
j

ei jqIm〈�GS|

× c†
j,γ

1

ω + H − EG + iη
c†

L/2,γ |�GS〉, (11)

where j is a site, c j,γ = ∑
σ c j,γ ,σ is the fermionic annihila-

tion operator. while c†
i,γ = ∑

σ c†
j,γ ,σ is the creation operator,

EG is the ground-state energy, and �GS is the ground-state
wave function of the system.

The corresponding orbital-resolved PDOS ργ (ω) was de-
fined as

ργ (ω) = −1

π

∑
q

ImAγ (q, ω), (12)

where Aγ (q, ω) is a single-particle Green’s function of the γ

orbital electrons.
We calculated the single-particle spectra Aγ (q, ω) and

PDOS ργ (ω) at JH/U = 0.25 and U/W = 1.0, as displayed
in Fig. 9. The γ = 0 and γ = 2 orbitals present a metallic
behavior, suggesting the electrons are itinerant. Meanwhile,
the γ = 1 orbital displays the Mott transition behavior with
the pseudogap characteristic, where there are still some
finite charge fluctuations in this orbital. In addition, we also
present the single-particle spectra Aγ (q, ω) and PDOS ργ (ω)
for U/W = 2 in Fig. 10. It is clearly shown that the γ = 1
orbital has a Mott gap, while the other two orbitals have some
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FIG. 9. (a)–(c) Single-particle spectra Aγ (q, ω) for different or-
bitals at U/W = 1 and JH/U = 0.25. (d)–(f) Orbital-resolved PDOS
ργ (ω) for different orbitals at U/W = 1.0 and JH/U = 0.25.

electronic bands crossing the Fermi level, indicating itinerant
electronic behavior.

Hence, in this regime of intermediate Hubbard coupling
strengths, the coexistence of localized and itinerant carriers
supports the OSMP picture. This OSMP is related to having
special conditions in the system, such as different bandwidth
and crystal fields, as well as intermediate electronic corre-
lation. Here the γ = 1 orbital is easier to be localized by
Hubbard U than the γ = 2 orbital due to different band-
widths. The OSMP physics has been extensively discussed in
experimental and theoretical works in low-dimensional iron
systems with electronic density n = 6, such as the iron lad-
ders BaFe2Se3 [35–37] and the iron pnictides/chalcogenides
superconductors [67,68]. Here our DMRG results indicate this
interesting OSMP state may also appear in the Ba2FeS3 iron
chain system (electronic density n = 6), and they thus deserve
more experimental studies. As the electronic correlation U/W
increases, all the orbitals eventually become Mott localized
with the electronic occupancies (n0 = 2, n1 = 1, and n2 = 1),
as displayed in Fig. 7. Then the MI phase eventually sup-
presses the OSMP at very large Hubbard coupling.

In addition, we also calculated the entanglement entropy
to better understand the OSMP-MI phase transition, using
the Von Neumann form [69,70]. As shown in Fig. 11, there
are three regimes here, corresponding to PM, AFM-OSMP,
and AFM-MI states, which is qualitatively in agreement with
our results via the spin-spin correlation S(r) and charge

125122-7



ZHANG, LIN, ALVAREZ, MOREO, AND DAGOTTO PHYSICAL REVIEW B 104, 125122 (2021)

0 1 2

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

ω
-μ

(a) γ=0

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

(d)

(e)(b) γ=1

ω
-μ

0 1/2 1 3/2 2-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

(f)(c) γ=2

ω
-μ

q/π ρ(ω−μ)

FIG. 10. (a)–(c) Single-particle spectra Aγ (q, ω) for different or-
bitals at U/W = 1 and JH/U = 0.25. (d)–(f) Orbital-resolved PDOS
ργ (ω) for different orbitals, at U/W = 2 and JH/U = 0.25.

fluctuations δnγ . At U/W � 0.4, SVN begins to drop rapidly,
corresponding to the PM to AFM-OSMP phase transition. At
U/W � 4.5, SVN smoothly converges to a constant. In fact,
this convergence does not reflect on the spin-spin correlation
S(r) because the magnetic order does not change from the
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FIG. 11. Von Neumann entanglement entropy (SVN) for the
three-orbital chain model as a function of U/W at JH/U = 0.25.
Inset: Derivative of SVN.
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FIG. 12. Spin-spin correlation S(r) = 〈Si · S j〉 (with r = |i − j|)

in real space for different values of U/W at (a) JH/U = 0.20,
(b) JH/U = 0.15, and (c) JH/U = 0.10.

AFM-OSMP state to the AFM-MI phase. The main difference
between AFM-MI and AFM-OSMP relies on the electronic
density, i.e., whether it is localized or not. In this case, this
difference between those two states can be reflected in the
charge fluctuations δnγ , where all the orbitals eventually with
increasing U/W become Mott localized leading to insulating
behavior starting approximately at U/W ∼ 4.5 (see Fig. 7). It
also should be noticed that finite lattice size effects and the
use of a limited number of states in DMRG would affect the
specific boundary values of this regime change from delocal-
ized to localized electrons. But the presence of three different
regimes in this model was established via the entanglement
entropy, qualitatively agreeing with our other DMRG results.
Since the two states (AFM-OSMP and AFM-MI) involved in
the discussion are both AFM, we believe that the transition
from OSMP to MI is not a sharp true phase transition involv-
ing a singularity in some quantity (see Fig. 11). Hence, we
believe it can be better described as a “rapid crossover” from
AFM-OSMP to AFM-MI.

D. Additional results

As shown in Fig. 12, we present the spin-spin correlation
S(r) for several values of U/W , at different Hund couplings
JH/U = 0.10, 0.15, and 0.20. As the electronic correlation
U/W increases, the staggered AFM phase with π vector
becomes dominant in the entire region, at least within the
range we studied. In fact, this staggered AFM order (π vector)
was also observed in a large regime of the phase diagram
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FIG. 13. DMRG phase diagram of the three-orbital Hubbard
model varying U/W and JH/U , using a L = 16 chain. Differ-
ent phases are indicated with the PM, AFM-OSMP, and AFM-MI
phases. Small solid circles indicate specific values of data points that
were investigated with DMRG calculations.

in previous mean-field calculations [41], although by using
different hoppings.

Due to its unique geometric chain configuration, this sys-
tem displays strong Hubbard superexchange interaction along
the chain, which is different from other iron-based chains
or ladders. It should be noted that several interesting phases
(i.e., block-type ↑-↑-↓-↓ and FM phases) were found in our
previous DMRG phase diagram for a chain system [44,47,61].
Previous work [61] suggests the block-type AFM could be
stable due to the competition between the JH and superex-
change interaction. The JH favors FM ordering, corresponding
to the double-exchange interaction in manganites [71], while
the superexchange interaction favors AFM ordering. How-
ever, in the Ba2FeS3 system of our focus here, the weak
p-d hybridization suppresses the double exchange interaction.
Thus, the superexchange Hubbard interaction is dominant,
leading to robust staggered AFM order. Again, we believe this
is because only one of the orbitals has a robust intraorbital
hopping, thus dominating the physics.

In addition, the magnetic phase diagram was calculated
varying JH/U and U/W , based on the DMRG results [spin-
spin correlation S(r) and charge fluctuations δnγ ]. We found
three dominant regimes, involving metallic PM, AFM-OSMP,
and AFM-MI phases, as shown in Fig. 13. Note that the
boundaries coupling values should be considered only as
crude approximations. However, the existence of the three
regions shown was clearly established, even if the boundaries
are only rough estimations. We believe our theoretical phase
diagram should encourage a more detailed experimental study
of iron chalcogenide compounds or related systems.

If the NN distance could be reduced by considering chem-
ical doping or strain effects, the crystal-field splitting and the
hybridization would increase. Then, it may be possible to
achieve some interesting magnetic phases in this system, as
discussed in Refs. [41,61]. This may be a possible direction
for further experimental or theoretical studies working on this

material or similar variations obtained by altering the 213
chemical formula.

In summary of our DMRG results, after the paramagnetic
regime of weak coupling, we found the AFM state with ↑-↓-
↑-↓ configuration in our three-orbital Hubbard model, at the
robust range of U/W and JH/U that we studied. At intermedi-
ate Hubbard coupling strengths, this system displayed OSMP
behavior, while the OSMP was suppressed by MI phase at
very large U/W .

V. CONCLUSIONS

In this article we systematically studied the compound
Ba2FeS3 (HP) by using first-principles DFT and also DMRG
calculations. A strongly anisotropic one-dimensional elec-
tronic band structure was observed in the nonmagnetic phase,
corresponding to its dominant chain geometry. The magnetic
coupling along the chain was found to be the key ingredient
for magnetism. The staggered magnetic state with a Mott
gap was found to be the most likely magnetic ground state
among all the candidates studied. Based on the Wannier func-
tions calculated from DFT, we obtained the nearest-neighbor
hopping amplitudes and on-site energies for the iron atoms.
Then a multiorbital Hubbard model for the iron chain was
constructed and studied by using the many-body DMRG
methodology, considering quantum fluctuations. Based on the
DMRG calculations, we obtained a dominant staggered AFM
state (↑-↓-↑-↓). This staggered ↑-↓ AFM with π vector was
found in a robust portion of the phase diagram at many val-
ues of U/W and JH/U , in agreement with DFT calculations.
At intermediate Hubbard coupling strengths, this system dis-
played orbital-selective Mott phase behavior, corresponding
to one localized orbital and two itinerant metallic orbitals, the
latter with nonzero charge fluctuations. At larger U/W , the
system crossovers to a Mott insulating state (n0 = 2, n1 = 1,
and n2 = 1) with one double occupied orbital (γ = 0) and two
half-occupied orbitals (γ = 1 and γ = 2).
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APPENDIX A: HOPPINGS

Here we focus only on the iron chain since the intrachain
coupling is the key aspect to understand the physical prop-
erties of Ba2FeS3 (HP). Thus we used the MLWFs to fit the
DFT bands along the b axis (Y -�), corresponding to the quasi-
one-dimensional electronic characteristics of Ba2FeS3 (HP),
as displayed in Fig. 14(a). Based on the Wannier fitting results,
we deduced the hopping parameters and on-site matrix.
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FIG. 14. (a) DFT and Wannier bands of Ba2FeS3 (HP) along the
FeS4 chain direction (b axis). (b) Three-orbital tight-binding model
with nearest-neighbor hoppings along the b axis. The BZ points
are Y = (0, 0.5, 0) and � = (0, 0, 0). Note that Y is in scaled units,
corresponding to the units of 2π/b.

Considering the computational limitation of the DMRG
method, we constructed a three-orbital model involving the or-
bital basis dxz, dx2−y2 , and dxy for the iron chain, readjusted to
properly fit the band structure after reducing the original five
orbitals to three. The three-orbital tight-binding bands agree
qualitatively well with the DFT band structure, as displayed
in Fig. 14(b).

Based on the Wannier fitting, we obtained four on-site
matrices for the four Fe atoms in a unit cell, using the basis
{dz2 , dxz, dyz, dx2−y2 , dxy}:

t1
on-site =

⎡
⎢⎢⎢⎢⎢⎣

dz2 dxz dyz dx2−y2 dxy

3.812 −0.063 0.000 0.075 0.000
−0.063 3.628 0.000 0.183 0.000
0.000 0.000 3.509 0.000 −0.054
0.075 0.183 0.000 3.644 0.000
0.000 0.000 −0.054 0.000 3.618

⎤
⎥⎥⎥⎥⎥⎦

,

(A1)

t2
on-site =

⎡
⎢⎢⎢⎣

3.812 −0.063 0.000 0.075 0.000
−0.063 3.628 0.000 0.183 0.000
0.000 0.000 3.509 0.000 −0.054
0.075 0.183 0.000 3.644 0.000
0.000 0.000 −0.054 0.000 3.618

⎤
⎥⎥⎥⎦,

(A2)

t3
on-site =

⎡
⎢⎢⎢⎣

3.812 0.063 0.000 0.075 0.000
0.063 3.628 0.000 −0.183 0.000
0.000 0.000 3.509 0.000 0.054
0.075 −0.183 0.000 3.644 0.000
0.000 0.000 0.054 0.000 3.618

⎤
⎥⎥⎥⎦,

(A3)

t4
on-site =

⎡
⎢⎢⎢⎣

3.812 0.063 0.000 0.075 0.000
0.063 3.628 0.000 −0.183 0.000
0.000 0.000 3.509 0.000 0.054
0.075 −0.183 0.000 3.644 0.000
0.000 0.000 0.054 0.000 3.618

⎤
⎥⎥⎥⎦.

(A4)

Furthermore, we also obtained four nearest-neighbors hop-
ping matrices along the b axis, corresponding to the four Fe
atoms in a unit cell:

t1
�b =

⎡
⎢⎢⎢⎣

0.057 −0.094 0.071 0.048 0.011
−0.094 −0.003 −0.019 0.020 −0.083
−0.071 0.019 −0.016 0.055 −0.132
0.048 0.020 −0.055 0.169 0.022

−0.011 0.083 −0.132 −0.022 0.172

⎤
⎥⎥⎥⎦,

(A5)

t2
�b =

⎡
⎢⎢⎢⎣

0.057 −0.094 −0.071 0.048 −0.011
−0.094 −0.003 0.019 0.020 0.083
0.071 −0.019 −0.016 −0.055 −0.132
0.048 0.020 0.055 0.169 −0.022
0.011 −0.083 −0.132 0.022 0.172

⎤
⎥⎥⎥⎦,

(A6)

t3
�b =

⎡
⎢⎢⎢⎣

0.057 0.094 0.071 0.048 −0.011
0.094 −0.003 0.019 −0.020 −0.083

−0.071 −0.019 −0.016 0.055 0.132
0.048 −0.020 −0.055 0.169 −0.022
0.011 0.083 0.132 0.022 0.172

⎤
⎥⎥⎥⎦,

(A7)

t4
�b =

⎡
⎢⎢⎢⎣

0.057 0.094 −0.071 0.048 0.011
0.094 −0.003 −0.019 −0.020 0.083
0.071 0.019 −0.016 −0.055 0.132
0.048 −0.020 0.055 0.169 0.022

−0.011 −0.083 0.132 −0.022 0.172

⎤
⎥⎥⎥⎦.

(A8)

As shown above, there are some nonzero off-diagonal
elements in the on-site matrices, indicating the constructed
MLWFs orbitals are not exactly orthogonal to one other.
Hence, we introduced a unitary matrix transformation to re-
construct the effective on-site and hopping matrices:

U =

⎡
⎢⎢⎢⎣

0.881 −0.246 0.000 −0.406 0.000
0.131 −0.696 0.000 0.706 0.000
0.000 0.000 0.925 0.000 −0.381
0.456 0.675 0.000 0.580 0.000
0.000 0.000 0.381 0.000 0.925

⎤
⎥⎥⎥⎦,

(A9)
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FIG. 15. Orbital-resolved occupation number nγ , mean-value of
the total spin-squared 〈S2〉, at different values of U/W and JH/U =
1/4. Here we used a 24-sites cluster chain with nearest-neighbor
hoppings for four electrons in three orbitals.

As discussed in the main text, the Ba2FeS3 (HP) is a quasi-
one-dimensional system, where the physical properties are
primarily contributed by the intrachain coupling. Hence, we
just considered one iron chain and NN hopping in our DMRG
calculations. The reconstructed on-site and hopping matrices
are

t1
on-site =

⎡
⎢⎢⎢⎢⎢⎣

dz2 dxz dyz dx2−y2 dxy

3.841 0.000 0.000 0.000 0.000
0.000 3.428 0.000 0.000 0.000
0.000 0.000 3.487 0.000 0.000
0.000 0.000 0.000 3.814 0.000
0.000 0.000 0.000 0.000 3.640

⎤
⎥⎥⎥⎥⎥⎦

,

(A10)

t1
�b =

⎡
⎢⎢⎢⎣

0.098 0.119 0.035 −0.006 −0.005
0.119 0.012 −0.011 0.045 0.080

−0.035 0.011 −0.082 0.087 −0.028
−0.006 0.045 −0.087 0.112 −0.018
0.005 −0.080 −0.028 0.018 0.238

⎤
⎥⎥⎥⎦.

(A11)

Here we used the three orbitals {dxz, dx2−y2 , dxy} in our cal-
culations, corresponding to the electronic density per orbital
n = 4/3. As explained before, this electronic density is widely
used in the context of iron low-dimensional compounds with
DMRG technology, where the “real” iron is in a valence Fe2+,
corresponding to six electrons in five orbitals per site [36,59].
In our DMRG calculations, the on-site and hopping matrices
are

ton-site =

⎡
⎢⎣

dxz dx2−y2 dxy

3.428 0.000 0.000
0.000 3.814 0.000
0.000 0.000 3.640

⎤
⎥⎦, (A12)

tγ γ ′ =
⎡
⎣

0.012 0.045 0.080
0.045 0.112 −0.018

−0.080 0.018 0.238

⎤
⎦. (A13)

APPENDIX B: DMRG RESULTS FOR L = 24

As displayed in Fig. 15, we show the site-averaged oc-
cupancy of different orbitals nγ vs U/W for L = 24, at the
typical value of JH/U . Those results are similar to the re-
sults of L = 16 (Fig. 7), indicating that our results are robust
against changes in L (small size effects).
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